L(s) = 1 | − 9·3-s − 106.·5-s + 81·9-s − 250.·11-s + 300.·13-s + 957.·15-s − 2.02e3·17-s + 2.25e3·19-s + 3.09e3·23-s + 8.19e3·25-s − 729·27-s − 6.60e3·29-s − 833.·31-s + 2.25e3·33-s + 8.95e3·37-s − 2.70e3·39-s + 7.20e3·41-s + 1.44e4·43-s − 8.61e3·45-s + 1.79e4·47-s + 1.81e4·51-s − 1.58e4·53-s + 2.66e4·55-s − 2.02e4·57-s + 2.67e4·59-s + 2.67e4·61-s − 3.19e4·65-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.90·5-s + 0.333·9-s − 0.623·11-s + 0.493·13-s + 1.09·15-s − 1.69·17-s + 1.43·19-s + 1.21·23-s + 2.62·25-s − 0.192·27-s − 1.45·29-s − 0.155·31-s + 0.359·33-s + 1.07·37-s − 0.284·39-s + 0.669·41-s + 1.19·43-s − 0.634·45-s + 1.18·47-s + 0.979·51-s − 0.773·53-s + 1.18·55-s − 0.825·57-s + 0.998·59-s + 0.922·61-s − 0.938·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 9T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 106.T + 3.12e3T^{2} \) |
| 11 | \( 1 + 250.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 300.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 2.02e3T + 1.41e6T^{2} \) |
| 19 | \( 1 - 2.25e3T + 2.47e6T^{2} \) |
| 23 | \( 1 - 3.09e3T + 6.43e6T^{2} \) |
| 29 | \( 1 + 6.60e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 833.T + 2.86e7T^{2} \) |
| 37 | \( 1 - 8.95e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 7.20e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.44e4T + 1.47e8T^{2} \) |
| 47 | \( 1 - 1.79e4T + 2.29e8T^{2} \) |
| 53 | \( 1 + 1.58e4T + 4.18e8T^{2} \) |
| 59 | \( 1 - 2.67e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 2.67e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 4.44e4T + 1.35e9T^{2} \) |
| 71 | \( 1 + 2.04e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 3.87e4T + 2.07e9T^{2} \) |
| 79 | \( 1 + 6.72e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 3.58e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 1.06e5T + 5.58e9T^{2} \) |
| 97 | \( 1 + 9.81e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.351500183150281192324734853001, −8.524880015354695936502145007018, −7.46280259648154422183947954837, −7.12223809745287555740885611823, −5.73222867793638819646648188684, −4.64806802053630686051628136063, −3.92774172082800445149055453436, −2.80772573298551080807782100242, −0.938950882289996683333585542368, 0,
0.938950882289996683333585542368, 2.80772573298551080807782100242, 3.92774172082800445149055453436, 4.64806802053630686051628136063, 5.73222867793638819646648188684, 7.12223809745287555740885611823, 7.46280259648154422183947954837, 8.524880015354695936502145007018, 9.351500183150281192324734853001