Properties

Label 2-588-1.1-c5-0-30
Degree $2$
Conductor $588$
Sign $-1$
Analytic cond. $94.3056$
Root an. cond. $9.71111$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 33.4·5-s + 81·9-s − 707.·11-s + 83.0·13-s + 300.·15-s + 512.·17-s + 1.03e3·19-s + 565.·23-s − 2.00e3·25-s + 729·27-s + 81.1·29-s − 2.27e3·31-s − 6.36e3·33-s − 1.01e4·37-s + 747.·39-s + 4.26e3·41-s − 1.83e4·43-s + 2.70e3·45-s − 2.25e4·47-s + 4.61e3·51-s − 3.59e3·53-s − 2.36e4·55-s + 9.31e3·57-s + 2.00e4·59-s + 3.29e4·61-s + 2.77e3·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.597·5-s + 0.333·9-s − 1.76·11-s + 0.136·13-s + 0.345·15-s + 0.429·17-s + 0.657·19-s + 0.222·23-s − 0.642·25-s + 0.192·27-s + 0.0179·29-s − 0.424·31-s − 1.01·33-s − 1.21·37-s + 0.0786·39-s + 0.395·41-s − 1.51·43-s + 0.199·45-s − 1.48·47-s + 0.248·51-s − 0.175·53-s − 1.05·55-s + 0.379·57-s + 0.748·59-s + 1.13·61-s + 0.0814·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(94.3056\)
Root analytic conductor: \(9.71111\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 588,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
7 \( 1 \)
good5 \( 1 - 33.4T + 3.12e3T^{2} \)
11 \( 1 + 707.T + 1.61e5T^{2} \)
13 \( 1 - 83.0T + 3.71e5T^{2} \)
17 \( 1 - 512.T + 1.41e6T^{2} \)
19 \( 1 - 1.03e3T + 2.47e6T^{2} \)
23 \( 1 - 565.T + 6.43e6T^{2} \)
29 \( 1 - 81.1T + 2.05e7T^{2} \)
31 \( 1 + 2.27e3T + 2.86e7T^{2} \)
37 \( 1 + 1.01e4T + 6.93e7T^{2} \)
41 \( 1 - 4.26e3T + 1.15e8T^{2} \)
43 \( 1 + 1.83e4T + 1.47e8T^{2} \)
47 \( 1 + 2.25e4T + 2.29e8T^{2} \)
53 \( 1 + 3.59e3T + 4.18e8T^{2} \)
59 \( 1 - 2.00e4T + 7.14e8T^{2} \)
61 \( 1 - 3.29e4T + 8.44e8T^{2} \)
67 \( 1 + 5.39e4T + 1.35e9T^{2} \)
71 \( 1 + 130.T + 1.80e9T^{2} \)
73 \( 1 - 3.14e4T + 2.07e9T^{2} \)
79 \( 1 - 4.62e4T + 3.07e9T^{2} \)
83 \( 1 + 8.55e4T + 3.93e9T^{2} \)
89 \( 1 + 2.06e4T + 5.58e9T^{2} \)
97 \( 1 + 6.04e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.646816452145910773736916351992, −8.490071103635805693915145297706, −7.83177888431172913346278634242, −6.90608167240432144034535807618, −5.63165112379477291361083766472, −4.99444763709064264923097127847, −3.51925886232241659877536443295, −2.60909979313089803152006306619, −1.57162147693387045899322367371, 0, 1.57162147693387045899322367371, 2.60909979313089803152006306619, 3.51925886232241659877536443295, 4.99444763709064264923097127847, 5.63165112379477291361083766472, 6.90608167240432144034535807618, 7.83177888431172913346278634242, 8.490071103635805693915145297706, 9.646816452145910773736916351992

Graph of the $Z$-function along the critical line