Properties

Label 2-588-1.1-c5-0-32
Degree $2$
Conductor $588$
Sign $-1$
Analytic cond. $94.3056$
Root an. cond. $9.71111$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 35.3·5-s + 81·9-s + 43.5·11-s − 648.·13-s + 318.·15-s − 598.·17-s + 640.·19-s − 271.·23-s − 1.87e3·25-s + 729·27-s − 5.28e3·29-s + 443.·31-s + 392.·33-s − 8.88e3·37-s − 5.83e3·39-s − 7.48e3·41-s + 3.60e3·43-s + 2.86e3·45-s + 3.01e3·47-s − 5.38e3·51-s − 7.11e3·53-s + 1.54e3·55-s + 5.76e3·57-s − 3.28e4·59-s + 1.91e4·61-s − 2.29e4·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.632·5-s + 0.333·9-s + 0.108·11-s − 1.06·13-s + 0.365·15-s − 0.502·17-s + 0.407·19-s − 0.107·23-s − 0.599·25-s + 0.192·27-s − 1.16·29-s + 0.0828·31-s + 0.0626·33-s − 1.06·37-s − 0.614·39-s − 0.695·41-s + 0.297·43-s + 0.210·45-s + 0.199·47-s − 0.290·51-s − 0.347·53-s + 0.0687·55-s + 0.235·57-s − 1.22·59-s + 0.659·61-s − 0.673·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(94.3056\)
Root analytic conductor: \(9.71111\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 588,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
7 \( 1 \)
good5 \( 1 - 35.3T + 3.12e3T^{2} \)
11 \( 1 - 43.5T + 1.61e5T^{2} \)
13 \( 1 + 648.T + 3.71e5T^{2} \)
17 \( 1 + 598.T + 1.41e6T^{2} \)
19 \( 1 - 640.T + 2.47e6T^{2} \)
23 \( 1 + 271.T + 6.43e6T^{2} \)
29 \( 1 + 5.28e3T + 2.05e7T^{2} \)
31 \( 1 - 443.T + 2.86e7T^{2} \)
37 \( 1 + 8.88e3T + 6.93e7T^{2} \)
41 \( 1 + 7.48e3T + 1.15e8T^{2} \)
43 \( 1 - 3.60e3T + 1.47e8T^{2} \)
47 \( 1 - 3.01e3T + 2.29e8T^{2} \)
53 \( 1 + 7.11e3T + 4.18e8T^{2} \)
59 \( 1 + 3.28e4T + 7.14e8T^{2} \)
61 \( 1 - 1.91e4T + 8.44e8T^{2} \)
67 \( 1 - 1.49e4T + 1.35e9T^{2} \)
71 \( 1 - 2.50e4T + 1.80e9T^{2} \)
73 \( 1 + 1.14e4T + 2.07e9T^{2} \)
79 \( 1 + 5.40e4T + 3.07e9T^{2} \)
83 \( 1 - 1.21e4T + 3.93e9T^{2} \)
89 \( 1 + 8.90e4T + 5.58e9T^{2} \)
97 \( 1 + 3.58e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.537069413418577859384032375537, −8.714999898610115960501227909494, −7.66781451889222459265293861795, −6.90704600287378944120673031670, −5.77709946754771630718600210213, −4.82213163664477157917860142044, −3.65624684845470228314683511353, −2.48925191308599827046257317451, −1.62815905089617252474246930185, 0, 1.62815905089617252474246930185, 2.48925191308599827046257317451, 3.65624684845470228314683511353, 4.82213163664477157917860142044, 5.77709946754771630718600210213, 6.90704600287378944120673031670, 7.66781451889222459265293861795, 8.714999898610115960501227909494, 9.537069413418577859384032375537

Graph of the $Z$-function along the critical line