Properties

Label 2-588-1.1-c7-0-21
Degree $2$
Conductor $588$
Sign $1$
Analytic cond. $183.682$
Root an. cond. $13.5529$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·3-s + 480.·5-s + 729·9-s + 8.12e3·11-s − 1.22e4·13-s − 1.29e4·15-s + 3.16e4·17-s + 8.81e3·19-s + 1.43e4·23-s + 1.52e5·25-s − 1.96e4·27-s − 1.04e5·29-s − 5.73e4·31-s − 2.19e5·33-s + 1.28e5·37-s + 3.30e5·39-s + 5.59e5·41-s + 6.02e5·43-s + 3.50e5·45-s + 3.75e5·47-s − 8.55e5·51-s + 9.42e4·53-s + 3.90e6·55-s − 2.38e5·57-s − 4.87e4·59-s + 5.15e5·61-s − 5.88e6·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.71·5-s + 0.333·9-s + 1.83·11-s − 1.54·13-s − 0.992·15-s + 1.56·17-s + 0.294·19-s + 0.245·23-s + 1.95·25-s − 0.192·27-s − 0.792·29-s − 0.346·31-s − 1.06·33-s + 0.416·37-s + 0.891·39-s + 1.26·41-s + 1.15·43-s + 0.573·45-s + 0.527·47-s − 0.903·51-s + 0.0869·53-s + 3.16·55-s − 0.170·57-s − 0.0309·59-s + 0.290·61-s − 2.65·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(183.682\)
Root analytic conductor: \(13.5529\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(3.408852482\)
\(L(\frac12)\) \(\approx\) \(3.408852482\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 27T \)
7 \( 1 \)
good5 \( 1 - 480.T + 7.81e4T^{2} \)
11 \( 1 - 8.12e3T + 1.94e7T^{2} \)
13 \( 1 + 1.22e4T + 6.27e7T^{2} \)
17 \( 1 - 3.16e4T + 4.10e8T^{2} \)
19 \( 1 - 8.81e3T + 8.93e8T^{2} \)
23 \( 1 - 1.43e4T + 3.40e9T^{2} \)
29 \( 1 + 1.04e5T + 1.72e10T^{2} \)
31 \( 1 + 5.73e4T + 2.75e10T^{2} \)
37 \( 1 - 1.28e5T + 9.49e10T^{2} \)
41 \( 1 - 5.59e5T + 1.94e11T^{2} \)
43 \( 1 - 6.02e5T + 2.71e11T^{2} \)
47 \( 1 - 3.75e5T + 5.06e11T^{2} \)
53 \( 1 - 9.42e4T + 1.17e12T^{2} \)
59 \( 1 + 4.87e4T + 2.48e12T^{2} \)
61 \( 1 - 5.15e5T + 3.14e12T^{2} \)
67 \( 1 + 1.01e6T + 6.06e12T^{2} \)
71 \( 1 + 2.20e6T + 9.09e12T^{2} \)
73 \( 1 - 4.90e6T + 1.10e13T^{2} \)
79 \( 1 - 2.39e6T + 1.92e13T^{2} \)
83 \( 1 + 8.32e6T + 2.71e13T^{2} \)
89 \( 1 - 5.39e5T + 4.42e13T^{2} \)
97 \( 1 + 9.41e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.507084179712579698398966721847, −9.227956668991035900541263079643, −7.55630062472326027638665741153, −6.73760624191585831143159921758, −5.83609863126090916423827442117, −5.31157033417808555295764374160, −4.10849444633271529013245897869, −2.70733279728920757329300747016, −1.62977306497517793835695145950, −0.877350864726866173261547107895, 0.877350864726866173261547107895, 1.62977306497517793835695145950, 2.70733279728920757329300747016, 4.10849444633271529013245897869, 5.31157033417808555295764374160, 5.83609863126090916423827442117, 6.73760624191585831143159921758, 7.55630062472326027638665741153, 9.227956668991035900541263079643, 9.507084179712579698398966721847

Graph of the $Z$-function along the critical line