Properties

Label 2-588-1.1-c7-0-27
Degree $2$
Conductor $588$
Sign $-1$
Analytic cond. $183.682$
Root an. cond. $13.5529$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·3-s − 129.·5-s + 729·9-s − 4.51e3·11-s + 7.88e3·13-s + 3.49e3·15-s − 7.08e3·17-s − 1.40e4·19-s + 6.90e4·23-s − 6.13e4·25-s − 1.96e4·27-s + 4.73e4·29-s − 1.70e5·31-s + 1.22e5·33-s + 2.66e5·37-s − 2.13e5·39-s + 5.74e5·41-s + 1.09e4·43-s − 9.44e4·45-s + 1.53e5·47-s + 1.91e5·51-s − 1.66e6·53-s + 5.85e5·55-s + 3.79e5·57-s + 4.11e5·59-s + 2.67e6·61-s − 1.02e6·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.463·5-s + 0.333·9-s − 1.02·11-s + 0.995·13-s + 0.267·15-s − 0.349·17-s − 0.470·19-s + 1.18·23-s − 0.785·25-s − 0.192·27-s + 0.360·29-s − 1.02·31-s + 0.591·33-s + 0.865·37-s − 0.575·39-s + 1.30·41-s + 0.0209·43-s − 0.154·45-s + 0.216·47-s + 0.201·51-s − 1.53·53-s + 0.474·55-s + 0.271·57-s + 0.261·59-s + 1.50·61-s − 0.461·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(183.682\)
Root analytic conductor: \(13.5529\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 588,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 27T \)
7 \( 1 \)
good5 \( 1 + 129.T + 7.81e4T^{2} \)
11 \( 1 + 4.51e3T + 1.94e7T^{2} \)
13 \( 1 - 7.88e3T + 6.27e7T^{2} \)
17 \( 1 + 7.08e3T + 4.10e8T^{2} \)
19 \( 1 + 1.40e4T + 8.93e8T^{2} \)
23 \( 1 - 6.90e4T + 3.40e9T^{2} \)
29 \( 1 - 4.73e4T + 1.72e10T^{2} \)
31 \( 1 + 1.70e5T + 2.75e10T^{2} \)
37 \( 1 - 2.66e5T + 9.49e10T^{2} \)
41 \( 1 - 5.74e5T + 1.94e11T^{2} \)
43 \( 1 - 1.09e4T + 2.71e11T^{2} \)
47 \( 1 - 1.53e5T + 5.06e11T^{2} \)
53 \( 1 + 1.66e6T + 1.17e12T^{2} \)
59 \( 1 - 4.11e5T + 2.48e12T^{2} \)
61 \( 1 - 2.67e6T + 3.14e12T^{2} \)
67 \( 1 - 1.11e6T + 6.06e12T^{2} \)
71 \( 1 - 5.51e4T + 9.09e12T^{2} \)
73 \( 1 - 3.15e6T + 1.10e13T^{2} \)
79 \( 1 + 4.28e5T + 1.92e13T^{2} \)
83 \( 1 + 7.54e5T + 2.71e13T^{2} \)
89 \( 1 + 1.18e7T + 4.42e13T^{2} \)
97 \( 1 - 7.12e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.107029320786189168271238654177, −8.171759338985244130123338797068, −7.37735289603475483950604511053, −6.36131680495177879727323686950, −5.50351123279456220994426351622, −4.53451548562499711221742494579, −3.55830368445329126173359540175, −2.33130896405830937589870748590, −0.999468640542885247073741781067, 0, 0.999468640542885247073741781067, 2.33130896405830937589870748590, 3.55830368445329126173359540175, 4.53451548562499711221742494579, 5.50351123279456220994426351622, 6.36131680495177879727323686950, 7.37735289603475483950604511053, 8.171759338985244130123338797068, 9.107029320786189168271238654177

Graph of the $Z$-function along the critical line