Properties

Label 2-588-1.1-c7-0-28
Degree $2$
Conductor $588$
Sign $-1$
Analytic cond. $183.682$
Root an. cond. $13.5529$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·3-s − 160.·5-s + 729·9-s + 3.16e3·11-s − 4.77e3·13-s + 4.32e3·15-s − 1.30e4·17-s + 4.41e4·19-s − 6.50e4·23-s − 5.24e4·25-s − 1.96e4·27-s − 2.46e5·29-s + 3.00e5·31-s − 8.54e4·33-s + 5.16e5·37-s + 1.28e5·39-s − 3.77e5·41-s − 7.14e4·43-s − 1.16e5·45-s + 1.11e6·47-s + 3.51e5·51-s − 3.68e5·53-s − 5.06e5·55-s − 1.19e6·57-s + 1.03e6·59-s − 3.22e5·61-s + 7.64e5·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.573·5-s + 0.333·9-s + 0.716·11-s − 0.602·13-s + 0.330·15-s − 0.642·17-s + 1.47·19-s − 1.11·23-s − 0.671·25-s − 0.192·27-s − 1.87·29-s + 1.81·31-s − 0.413·33-s + 1.67·37-s + 0.347·39-s − 0.856·41-s − 0.136·43-s − 0.191·45-s + 1.56·47-s + 0.370·51-s − 0.340·53-s − 0.410·55-s − 0.851·57-s + 0.654·59-s − 0.182·61-s + 0.345·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(183.682\)
Root analytic conductor: \(13.5529\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 588,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 27T \)
7 \( 1 \)
good5 \( 1 + 160.T + 7.81e4T^{2} \)
11 \( 1 - 3.16e3T + 1.94e7T^{2} \)
13 \( 1 + 4.77e3T + 6.27e7T^{2} \)
17 \( 1 + 1.30e4T + 4.10e8T^{2} \)
19 \( 1 - 4.41e4T + 8.93e8T^{2} \)
23 \( 1 + 6.50e4T + 3.40e9T^{2} \)
29 \( 1 + 2.46e5T + 1.72e10T^{2} \)
31 \( 1 - 3.00e5T + 2.75e10T^{2} \)
37 \( 1 - 5.16e5T + 9.49e10T^{2} \)
41 \( 1 + 3.77e5T + 1.94e11T^{2} \)
43 \( 1 + 7.14e4T + 2.71e11T^{2} \)
47 \( 1 - 1.11e6T + 5.06e11T^{2} \)
53 \( 1 + 3.68e5T + 1.17e12T^{2} \)
59 \( 1 - 1.03e6T + 2.48e12T^{2} \)
61 \( 1 + 3.22e5T + 3.14e12T^{2} \)
67 \( 1 + 2.35e4T + 6.06e12T^{2} \)
71 \( 1 - 2.84e6T + 9.09e12T^{2} \)
73 \( 1 - 6.73e5T + 1.10e13T^{2} \)
79 \( 1 + 8.58e5T + 1.92e13T^{2} \)
83 \( 1 - 7.32e6T + 2.71e13T^{2} \)
89 \( 1 - 4.62e6T + 4.42e13T^{2} \)
97 \( 1 - 9.51e5T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.351216547489543125712962857641, −8.054589051994932707914925931460, −7.38958294946502525000641974281, −6.40823831291849144607518351871, −5.51094056034148444138109923426, −4.43541368917953031866705715585, −3.66245487501254801123571137257, −2.28214029114981452941124919665, −1.01808585803640046968074364387, 0, 1.01808585803640046968074364387, 2.28214029114981452941124919665, 3.66245487501254801123571137257, 4.43541368917953031866705715585, 5.51094056034148444138109923426, 6.40823831291849144607518351871, 7.38958294946502525000641974281, 8.054589051994932707914925931460, 9.351216547489543125712962857641

Graph of the $Z$-function along the critical line