L(s) = 1 | + (0.446 + 1.34i)2-s + (−1.32 − 1.11i)3-s + (−1.60 + 1.19i)4-s − 0.803i·5-s + (0.899 − 2.27i)6-s + (−2.32 − 1.61i)8-s + (0.523 + 2.95i)9-s + (1.07 − 0.358i)10-s − 2.34·11-s + (3.45 + 0.189i)12-s + 5.26·13-s + (−0.893 + 1.06i)15-s + (1.12 − 3.83i)16-s − 1.18i·17-s + (−3.72 + 2.02i)18-s − 7.12i·19-s + ⋯ |
L(s) = 1 | + (0.315 + 0.948i)2-s + (−0.766 − 0.642i)3-s + (−0.800 + 0.599i)4-s − 0.359i·5-s + (0.367 − 0.930i)6-s + (−0.821 − 0.569i)8-s + (0.174 + 0.984i)9-s + (0.340 − 0.113i)10-s − 0.707·11-s + (0.998 + 0.0547i)12-s + 1.46·13-s + (−0.230 + 0.275i)15-s + (0.281 − 0.959i)16-s − 0.287i·17-s + (−0.879 + 0.476i)18-s − 1.63i·19-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(0.998+0.0547i)Λ(2−s)
Λ(s)=(=(588s/2ΓC(s+1/2)L(s)(0.998+0.0547i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
0.998+0.0547i
|
Analytic conductor: |
4.69520 |
Root analytic conductor: |
2.16684 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(491,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :1/2), 0.998+0.0547i)
|
Particular Values
L(1) |
≈ |
1.15230−0.0315413i |
L(21) |
≈ |
1.15230−0.0315413i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.446−1.34i)T |
| 3 | 1+(1.32+1.11i)T |
| 7 | 1 |
good | 5 | 1+0.803iT−5T2 |
| 11 | 1+2.34T+11T2 |
| 13 | 1−5.26T+13T2 |
| 17 | 1+1.18iT−17T2 |
| 19 | 1+7.12iT−19T2 |
| 23 | 1−7.88T+23T2 |
| 29 | 1+4.23iT−29T2 |
| 31 | 1+4.89iT−31T2 |
| 37 | 1−1.04T+37T2 |
| 41 | 1−7.16iT−41T2 |
| 43 | 1−7.94iT−43T2 |
| 47 | 1+6.09T+47T2 |
| 53 | 1+8.72iT−53T2 |
| 59 | 1+0.662T+59T2 |
| 61 | 1−0.958T+61T2 |
| 67 | 1+8.42iT−67T2 |
| 71 | 1−9.67T+71T2 |
| 73 | 1+1.41T+73T2 |
| 79 | 1−6.92iT−79T2 |
| 83 | 1+5.18T+83T2 |
| 89 | 1+16.3iT−89T2 |
| 97 | 1+4.37T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.04397459639656231711413962088, −9.603406983085260125225724394421, −8.629603565724761381773538574368, −7.893593993890682937306174450634, −6.89282329662253449901573288680, −6.26035133915951681315631619437, −5.20299547935448570402140308101, −4.59410065390423805430276284778, −2.94175952503214804468344791840, −0.78347227996802227378881050278,
1.27295861066982493299156417910, 3.13551205661835194280870846020, 3.88403758750064425494718174365, 5.10325507741140256050094446649, 5.78791793991457463413701508141, 6.82550997070366373903524209071, 8.441049394588522196356855305936, 9.156352540532201046480336362544, 10.41693297020776204787083691312, 10.60128364881388564050739062822