L(s) = 1 | + (0.446 + 1.34i)2-s + (−1.32 − 1.11i)3-s + (−1.60 + 1.19i)4-s − 0.803i·5-s + (0.899 − 2.27i)6-s + (−2.32 − 1.61i)8-s + (0.523 + 2.95i)9-s + (1.07 − 0.358i)10-s − 2.34·11-s + (3.45 + 0.189i)12-s + 5.26·13-s + (−0.893 + 1.06i)15-s + (1.12 − 3.83i)16-s − 1.18i·17-s + (−3.72 + 2.02i)18-s − 7.12i·19-s + ⋯ |
L(s) = 1 | + (0.315 + 0.948i)2-s + (−0.766 − 0.642i)3-s + (−0.800 + 0.599i)4-s − 0.359i·5-s + (0.367 − 0.930i)6-s + (−0.821 − 0.569i)8-s + (0.174 + 0.984i)9-s + (0.340 − 0.113i)10-s − 0.707·11-s + (0.998 + 0.0547i)12-s + 1.46·13-s + (−0.230 + 0.275i)15-s + (0.281 − 0.959i)16-s − 0.287i·17-s + (−0.879 + 0.476i)18-s − 1.63i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0547i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0547i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.15230 - 0.0315413i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.15230 - 0.0315413i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.446 - 1.34i)T \) |
| 3 | \( 1 + (1.32 + 1.11i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 0.803iT - 5T^{2} \) |
| 11 | \( 1 + 2.34T + 11T^{2} \) |
| 13 | \( 1 - 5.26T + 13T^{2} \) |
| 17 | \( 1 + 1.18iT - 17T^{2} \) |
| 19 | \( 1 + 7.12iT - 19T^{2} \) |
| 23 | \( 1 - 7.88T + 23T^{2} \) |
| 29 | \( 1 + 4.23iT - 29T^{2} \) |
| 31 | \( 1 + 4.89iT - 31T^{2} \) |
| 37 | \( 1 - 1.04T + 37T^{2} \) |
| 41 | \( 1 - 7.16iT - 41T^{2} \) |
| 43 | \( 1 - 7.94iT - 43T^{2} \) |
| 47 | \( 1 + 6.09T + 47T^{2} \) |
| 53 | \( 1 + 8.72iT - 53T^{2} \) |
| 59 | \( 1 + 0.662T + 59T^{2} \) |
| 61 | \( 1 - 0.958T + 61T^{2} \) |
| 67 | \( 1 + 8.42iT - 67T^{2} \) |
| 71 | \( 1 - 9.67T + 71T^{2} \) |
| 73 | \( 1 + 1.41T + 73T^{2} \) |
| 79 | \( 1 - 6.92iT - 79T^{2} \) |
| 83 | \( 1 + 5.18T + 83T^{2} \) |
| 89 | \( 1 + 16.3iT - 89T^{2} \) |
| 97 | \( 1 + 4.37T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04397459639656231711413962088, −9.603406983085260125225724394421, −8.629603565724761381773538574368, −7.893593993890682937306174450634, −6.89282329662253449901573288680, −6.26035133915951681315631619437, −5.20299547935448570402140308101, −4.59410065390423805430276284778, −2.94175952503214804468344791840, −0.78347227996802227378881050278,
1.27295861066982493299156417910, 3.13551205661835194280870846020, 3.88403758750064425494718174365, 5.10325507741140256050094446649, 5.78791793991457463413701508141, 6.82550997070366373903524209071, 8.441049394588522196356855305936, 9.156352540532201046480336362544, 10.41693297020776204787083691312, 10.60128364881388564050739062822