Properties

Label 2-588-12.11-c1-0-67
Degree 22
Conductor 588588
Sign 0.7550.655i-0.755 - 0.655i
Analytic cond. 4.695204.69520
Root an. cond. 2.166842.16684
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.750 − 1.19i)2-s + (0.448 − 1.67i)3-s + (−0.874 + 1.79i)4-s − 3.56i·5-s + (−2.34 + 0.717i)6-s + (2.81 − 0.301i)8-s + (−2.59 − 1.50i)9-s + (−4.27 + 2.67i)10-s + 0.335·11-s + (2.61 + 2.26i)12-s − 3.34·13-s + (−5.96 − 1.59i)15-s + (−2.47 − 3.14i)16-s − 0.335i·17-s + (0.150 + 4.23i)18-s − 1.84i·19-s + ⋯
L(s)  = 1  + (−0.530 − 0.847i)2-s + (0.258 − 0.965i)3-s + (−0.437 + 0.899i)4-s − 1.59i·5-s + (−0.956 + 0.292i)6-s + (0.994 − 0.106i)8-s + (−0.865 − 0.500i)9-s + (−1.35 + 0.845i)10-s + 0.101·11-s + (0.755 + 0.655i)12-s − 0.928·13-s + (−1.53 − 0.412i)15-s + (−0.617 − 0.786i)16-s − 0.0813i·17-s + (0.0354 + 0.999i)18-s − 0.424i·19-s + ⋯

Functional equation

Λ(s)=(588s/2ΓC(s)L(s)=((0.7550.655i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.755 - 0.655i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(588s/2ΓC(s+1/2)L(s)=((0.7550.655i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.755 - 0.655i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 588588    =    223722^{2} \cdot 3 \cdot 7^{2}
Sign: 0.7550.655i-0.755 - 0.655i
Analytic conductor: 4.695204.69520
Root analytic conductor: 2.166842.16684
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ588(491,)\chi_{588} (491, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 588, ( :1/2), 0.7550.655i)(2,\ 588,\ (\ :1/2),\ -0.755 - 0.655i)

Particular Values

L(1)L(1) \approx 0.299249+0.802027i0.299249 + 0.802027i
L(12)L(\frac12) \approx 0.299249+0.802027i0.299249 + 0.802027i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.750+1.19i)T 1 + (0.750 + 1.19i)T
3 1+(0.448+1.67i)T 1 + (-0.448 + 1.67i)T
7 1 1
good5 1+3.56iT5T2 1 + 3.56iT - 5T^{2}
11 10.335T+11T2 1 - 0.335T + 11T^{2}
13 1+3.34T+13T2 1 + 3.34T + 13T^{2}
17 1+0.335iT17T2 1 + 0.335iT - 17T^{2}
19 1+1.84iT19T2 1 + 1.84iT - 19T^{2}
23 14.45T+23T2 1 - 4.45T + 23T^{2}
29 1+5.91iT29T2 1 + 5.91iT - 29T^{2}
31 15.19iT31T2 1 - 5.19iT - 31T^{2}
37 13.19T+37T2 1 - 3.19T + 37T^{2}
41 1+1.45iT41T2 1 + 1.45iT - 41T^{2}
43 17.49iT43T2 1 - 7.49iT - 43T^{2}
47 1+8.91T+47T2 1 + 8.91T + 47T^{2}
53 1+4.79iT53T2 1 + 4.79iT - 53T^{2}
59 114.0T+59T2 1 - 14.0T + 59T^{2}
61 10.353T+61T2 1 - 0.353T + 61T^{2}
67 1+3.19iT67T2 1 + 3.19iT - 67T^{2}
71 1+10.3T+71T2 1 + 10.3T + 71T^{2}
73 14.69T+73T2 1 - 4.69T + 73T^{2}
79 1+4iT79T2 1 + 4iT - 79T^{2}
83 1+6.89T+83T2 1 + 6.89T + 83T^{2}
89 13.87iT89T2 1 - 3.87iT - 89T^{2}
97 12T+97T2 1 - 2T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.900287933909549962634619808644, −9.206596361638590755009870605791, −8.501598097836834293967461274165, −7.83325277977994722067133664905, −6.84601469135721764036948652590, −5.30947307153381941027763597087, −4.41339031241194199826627372673, −2.92199696086430359357669246936, −1.69200323861738231278646071240, −0.55805113252775934264538799508, 2.44809678025209432961904113088, 3.64686009553084169379046143680, 4.88639988946355243790710560186, 5.89128940257090269991457176447, 6.90275085219696646556011821385, 7.58731289075767848906451831079, 8.629203910919776258815569269395, 9.606368907711503880337289558729, 10.18683752021523188722057406802, 10.84629116150756918680547935406

Graph of the ZZ-function along the critical line