L(s) = 1 | + (−0.750 − 1.19i)2-s + (0.448 − 1.67i)3-s + (−0.874 + 1.79i)4-s − 3.56i·5-s + (−2.34 + 0.717i)6-s + (2.81 − 0.301i)8-s + (−2.59 − 1.50i)9-s + (−4.27 + 2.67i)10-s + 0.335·11-s + (2.61 + 2.26i)12-s − 3.34·13-s + (−5.96 − 1.59i)15-s + (−2.47 − 3.14i)16-s − 0.335i·17-s + (0.150 + 4.23i)18-s − 1.84i·19-s + ⋯ |
L(s) = 1 | + (−0.530 − 0.847i)2-s + (0.258 − 0.965i)3-s + (−0.437 + 0.899i)4-s − 1.59i·5-s + (−0.956 + 0.292i)6-s + (0.994 − 0.106i)8-s + (−0.865 − 0.500i)9-s + (−1.35 + 0.845i)10-s + 0.101·11-s + (0.755 + 0.655i)12-s − 0.928·13-s + (−1.53 − 0.412i)15-s + (−0.617 − 0.786i)16-s − 0.0813i·17-s + (0.0354 + 0.999i)18-s − 0.424i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.755 - 0.655i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.755 - 0.655i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.299249 + 0.802027i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.299249 + 0.802027i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.750 + 1.19i)T \) |
| 3 | \( 1 + (-0.448 + 1.67i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 3.56iT - 5T^{2} \) |
| 11 | \( 1 - 0.335T + 11T^{2} \) |
| 13 | \( 1 + 3.34T + 13T^{2} \) |
| 17 | \( 1 + 0.335iT - 17T^{2} \) |
| 19 | \( 1 + 1.84iT - 19T^{2} \) |
| 23 | \( 1 - 4.45T + 23T^{2} \) |
| 29 | \( 1 + 5.91iT - 29T^{2} \) |
| 31 | \( 1 - 5.19iT - 31T^{2} \) |
| 37 | \( 1 - 3.19T + 37T^{2} \) |
| 41 | \( 1 + 1.45iT - 41T^{2} \) |
| 43 | \( 1 - 7.49iT - 43T^{2} \) |
| 47 | \( 1 + 8.91T + 47T^{2} \) |
| 53 | \( 1 + 4.79iT - 53T^{2} \) |
| 59 | \( 1 - 14.0T + 59T^{2} \) |
| 61 | \( 1 - 0.353T + 61T^{2} \) |
| 67 | \( 1 + 3.19iT - 67T^{2} \) |
| 71 | \( 1 + 10.3T + 71T^{2} \) |
| 73 | \( 1 - 4.69T + 73T^{2} \) |
| 79 | \( 1 + 4iT - 79T^{2} \) |
| 83 | \( 1 + 6.89T + 83T^{2} \) |
| 89 | \( 1 - 3.87iT - 89T^{2} \) |
| 97 | \( 1 - 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.900287933909549962634619808644, −9.206596361638590755009870605791, −8.501598097836834293967461274165, −7.83325277977994722067133664905, −6.84601469135721764036948652590, −5.30947307153381941027763597087, −4.41339031241194199826627372673, −2.92199696086430359357669246936, −1.69200323861738231278646071240, −0.55805113252775934264538799508,
2.44809678025209432961904113088, 3.64686009553084169379046143680, 4.88639988946355243790710560186, 5.89128940257090269991457176447, 6.90275085219696646556011821385, 7.58731289075767848906451831079, 8.629203910919776258815569269395, 9.606368907711503880337289558729, 10.18683752021523188722057406802, 10.84629116150756918680547935406