L(s) = 1 | + (0.365 − 0.930i)3-s + (0.955 + 0.294i)7-s + (−0.733 − 0.680i)9-s + (−0.162 − 0.712i)13-s + (−0.955 + 1.65i)19-s + (0.623 − 0.781i)21-s + (0.955 − 0.294i)25-s + (−0.900 + 0.433i)27-s + (−0.826 − 1.43i)31-s + (0.123 − 0.0841i)37-s + (−0.722 − 0.108i)39-s + (−0.914 + 1.14i)43-s + (0.826 + 0.563i)49-s + (1.19 + 1.49i)57-s + (−1.48 + 1.01i)61-s + ⋯ |
L(s) = 1 | + (0.365 − 0.930i)3-s + (0.955 + 0.294i)7-s + (−0.733 − 0.680i)9-s + (−0.162 − 0.712i)13-s + (−0.955 + 1.65i)19-s + (0.623 − 0.781i)21-s + (0.955 − 0.294i)25-s + (−0.900 + 0.433i)27-s + (−0.826 − 1.43i)31-s + (0.123 − 0.0841i)37-s + (−0.722 − 0.108i)39-s + (−0.914 + 1.14i)43-s + (0.826 + 0.563i)49-s + (1.19 + 1.49i)57-s + (−1.48 + 1.01i)61-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(0.656+0.754i)Λ(1−s)
Λ(s)=(=(588s/2ΓC(s)L(s)(0.656+0.754i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
0.656+0.754i
|
Analytic conductor: |
0.293450 |
Root analytic conductor: |
0.541710 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :0), 0.656+0.754i)
|
Particular Values
L(21) |
≈ |
1.058745802 |
L(21) |
≈ |
1.058745802 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.365+0.930i)T |
| 7 | 1+(−0.955−0.294i)T |
good | 5 | 1+(−0.955+0.294i)T2 |
| 11 | 1+(−0.0747+0.997i)T2 |
| 13 | 1+(0.162+0.712i)T+(−0.900+0.433i)T2 |
| 17 | 1+(0.988−0.149i)T2 |
| 19 | 1+(0.955−1.65i)T+(−0.5−0.866i)T2 |
| 23 | 1+(0.988+0.149i)T2 |
| 29 | 1+(−0.623−0.781i)T2 |
| 31 | 1+(0.826+1.43i)T+(−0.5+0.866i)T2 |
| 37 | 1+(−0.123+0.0841i)T+(0.365−0.930i)T2 |
| 41 | 1+(0.222−0.974i)T2 |
| 43 | 1+(0.914−1.14i)T+(−0.222−0.974i)T2 |
| 47 | 1+(−0.826−0.563i)T2 |
| 53 | 1+(−0.365−0.930i)T2 |
| 59 | 1+(−0.955−0.294i)T2 |
| 61 | 1+(1.48−1.01i)T+(0.365−0.930i)T2 |
| 67 | 1+(−0.988−1.71i)T+(−0.5+0.866i)T2 |
| 71 | 1+(−0.623+0.781i)T2 |
| 73 | 1+(−0.142+0.0440i)T+(0.826−0.563i)T2 |
| 79 | 1+(0.826−1.43i)T+(−0.5−0.866i)T2 |
| 83 | 1+(0.900+0.433i)T2 |
| 89 | 1+(−0.0747−0.997i)T2 |
| 97 | 1+0.445T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.92203632131786625418748884954, −9.904766474933104848514331809085, −8.710344682811374315385849237885, −8.122516548400894825485095697460, −7.44032358348053150852922398315, −6.24818407639563623620885601400, −5.45819912085152944696962286714, −4.08989798739970360267810482275, −2.69671423820908542755360543616, −1.55666845176746133258904324933,
2.06715429261956956760919668483, 3.41845638561531586576518534399, 4.65024968572362047871172068240, 5.04234984429616369872013149462, 6.60176057751751878237849297667, 7.56650775776052910119368067032, 8.760332554025244268183448785121, 9.014108037172229645821252531473, 10.29958024115877648227223473393, 10.93457115634280473634913611373