L(s) = 1 | + (0.365 − 0.930i)3-s + (0.955 + 0.294i)7-s + (−0.733 − 0.680i)9-s + (−0.162 − 0.712i)13-s + (−0.955 + 1.65i)19-s + (0.623 − 0.781i)21-s + (0.955 − 0.294i)25-s + (−0.900 + 0.433i)27-s + (−0.826 − 1.43i)31-s + (0.123 − 0.0841i)37-s + (−0.722 − 0.108i)39-s + (−0.914 + 1.14i)43-s + (0.826 + 0.563i)49-s + (1.19 + 1.49i)57-s + (−1.48 + 1.01i)61-s + ⋯ |
L(s) = 1 | + (0.365 − 0.930i)3-s + (0.955 + 0.294i)7-s + (−0.733 − 0.680i)9-s + (−0.162 − 0.712i)13-s + (−0.955 + 1.65i)19-s + (0.623 − 0.781i)21-s + (0.955 − 0.294i)25-s + (−0.900 + 0.433i)27-s + (−0.826 − 1.43i)31-s + (0.123 − 0.0841i)37-s + (−0.722 − 0.108i)39-s + (−0.914 + 1.14i)43-s + (0.826 + 0.563i)49-s + (1.19 + 1.49i)57-s + (−1.48 + 1.01i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.656 + 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.656 + 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.058745802\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.058745802\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.365 + 0.930i)T \) |
| 7 | \( 1 + (-0.955 - 0.294i)T \) |
good | 5 | \( 1 + (-0.955 + 0.294i)T^{2} \) |
| 11 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 13 | \( 1 + (0.162 + 0.712i)T + (-0.900 + 0.433i)T^{2} \) |
| 17 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 19 | \( 1 + (0.955 - 1.65i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 29 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 31 | \( 1 + (0.826 + 1.43i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.123 + 0.0841i)T + (0.365 - 0.930i)T^{2} \) |
| 41 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 43 | \( 1 + (0.914 - 1.14i)T + (-0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 53 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 59 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 61 | \( 1 + (1.48 - 1.01i)T + (0.365 - 0.930i)T^{2} \) |
| 67 | \( 1 + (-0.988 - 1.71i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (-0.142 + 0.0440i)T + (0.826 - 0.563i)T^{2} \) |
| 79 | \( 1 + (0.826 - 1.43i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 97 | \( 1 + 0.445T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92203632131786625418748884954, −9.904766474933104848514331809085, −8.710344682811374315385849237885, −8.122516548400894825485095697460, −7.44032358348053150852922398315, −6.24818407639563623620885601400, −5.45819912085152944696962286714, −4.08989798739970360267810482275, −2.69671423820908542755360543616, −1.55666845176746133258904324933,
2.06715429261956956760919668483, 3.41845638561531586576518534399, 4.65024968572362047871172068240, 5.04234984429616369872013149462, 6.60176057751751878237849297667, 7.56650775776052910119368067032, 8.760332554025244268183448785121, 9.014108037172229645821252531473, 10.29958024115877648227223473393, 10.93457115634280473634913611373