L(s) = 1 | + (−10.9 + 11.0i)3-s + 30.7·5-s + (−2.58 − 242. i)9-s + 13.8i·11-s − 860. i·13-s + (−337. + 341. i)15-s − 1.17e3·17-s + 681. i·19-s − 880. i·23-s − 2.17e3·25-s + (2.72e3 + 2.63e3i)27-s − 3.78e3i·29-s + 6.09e3i·31-s + (−153. − 152. i)33-s − 2.43e3·37-s + ⋯ |
L(s) = 1 | + (−0.703 + 0.710i)3-s + 0.550·5-s + (−0.0106 − 0.999i)9-s + 0.0346i·11-s − 1.41i·13-s + (−0.387 + 0.391i)15-s − 0.984·17-s + 0.433i·19-s − 0.347i·23-s − 0.696·25-s + (0.718 + 0.695i)27-s − 0.835i·29-s + 1.13i·31-s + (−0.0246 − 0.0243i)33-s − 0.292·37-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(−0.591−0.805i)Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)(−0.591−0.805i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
−0.591−0.805i
|
Analytic conductor: |
94.3056 |
Root analytic conductor: |
9.71111 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :5/2), −0.591−0.805i)
|
Particular Values
L(3) |
≈ |
0.8609393912 |
L(21) |
≈ |
0.8609393912 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(10.9−11.0i)T |
| 7 | 1 |
good | 5 | 1−30.7T+3.12e3T2 |
| 11 | 1−13.8iT−1.61e5T2 |
| 13 | 1+860.iT−3.71e5T2 |
| 17 | 1+1.17e3T+1.41e6T2 |
| 19 | 1−681.iT−2.47e6T2 |
| 23 | 1+880.iT−6.43e6T2 |
| 29 | 1+3.78e3iT−2.05e7T2 |
| 31 | 1−6.09e3iT−2.86e7T2 |
| 37 | 1+2.43e3T+6.93e7T2 |
| 41 | 1−8.74e3T+1.15e8T2 |
| 43 | 1+4.82e3T+1.47e8T2 |
| 47 | 1−2.26e4T+2.29e8T2 |
| 53 | 1−3.25e4iT−4.18e8T2 |
| 59 | 1+5.68e3T+7.14e8T2 |
| 61 | 1+2.59e3iT−8.44e8T2 |
| 67 | 1+1.75e4T+1.35e9T2 |
| 71 | 1−3.75e4iT−1.80e9T2 |
| 73 | 1+5.62e3iT−2.07e9T2 |
| 79 | 1+3.55e3T+3.07e9T2 |
| 83 | 1−1.12e5T+3.93e9T2 |
| 89 | 1−4.94e3T+5.58e9T2 |
| 97 | 1−9.37e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39607371624377691932867078697, −9.500268123002302675340877659598, −8.659176601540254237672932818793, −7.52137354423008206772920795680, −6.30472666669312363207989400921, −5.69599189947823478982020106523, −4.76667590404267728668928568506, −3.72213364001292556529880365595, −2.49455562517168638319220624221, −0.946234843916634256259961719873,
0.23923915975400780849660285361, 1.62505323595414221299209749344, 2.36153583604324585569624415056, 4.10417057525675308202396111787, 5.11176450729189502917827738409, 6.11643343598016610781745979895, 6.77511812525332803045632315781, 7.61497253753000996848054084092, 8.815910473928303456507536742331, 9.556203968361779455244994979674