L(s) = 1 | + (−1.39 + 15.5i)3-s − 69.8·5-s + (−239. − 43.2i)9-s + 465. i·11-s + 285. i·13-s + (97.2 − 1.08e3i)15-s + 898.·17-s + 2.09e3i·19-s + 4.90e3i·23-s + 1.76e3·25-s + (1.00e3 − 3.65e3i)27-s + 5.87e3i·29-s + 3.85e3i·31-s + (−7.23e3 − 648. i)33-s − 3.61e3·37-s + ⋯ |
L(s) = 1 | + (−0.0892 + 0.996i)3-s − 1.25·5-s + (−0.984 − 0.177i)9-s + 1.16i·11-s + 0.469i·13-s + (0.111 − 1.24i)15-s + 0.753·17-s + 1.33i·19-s + 1.93i·23-s + 0.563·25-s + (0.264 − 0.964i)27-s + 1.29i·29-s + 0.720i·31-s + (−1.15 − 0.103i)33-s − 0.434·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.488 + 0.872i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.488 + 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.8909922496\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8909922496\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.39 - 15.5i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 69.8T + 3.12e3T^{2} \) |
| 11 | \( 1 - 465. iT - 1.61e5T^{2} \) |
| 13 | \( 1 - 285. iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 898.T + 1.41e6T^{2} \) |
| 19 | \( 1 - 2.09e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 4.90e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 5.87e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 3.85e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 + 3.61e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 1.71e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.85e4T + 1.47e8T^{2} \) |
| 47 | \( 1 - 2.42e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 7.61e3iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 1.06e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 1.56e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 2.97e3T + 1.35e9T^{2} \) |
| 71 | \( 1 - 1.62e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 - 1.46e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 8.61e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 2.74e3T + 3.93e9T^{2} \) |
| 89 | \( 1 - 1.01e5T + 5.58e9T^{2} \) |
| 97 | \( 1 + 2.34e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39512350896279161197536456910, −9.733150763832826412061566985746, −8.828478928837068092911129909519, −7.82544645233373747552826923453, −7.16569626793204863244131868543, −5.73802115678882106231296564021, −4.80765127272082477422119370976, −3.89265128049339003387854445969, −3.26832918691912257069371712532, −1.51040807852404602037953738804,
0.31006399939765151973950312930, 0.70588602950228795784702917118, 2.48874162263175791447334564673, 3.39241383492159490719642501602, 4.62257019196225831524784769352, 5.85136091702490945336723380382, 6.68355823184572880381317824421, 7.72396213987259566361029267738, 8.181350894227954265885153620129, 8.992134806611633503920996494205