L(s) = 1 | + (−1.39 + 15.5i)3-s − 69.8·5-s + (−239. − 43.2i)9-s + 465. i·11-s + 285. i·13-s + (97.2 − 1.08e3i)15-s + 898.·17-s + 2.09e3i·19-s + 4.90e3i·23-s + 1.76e3·25-s + (1.00e3 − 3.65e3i)27-s + 5.87e3i·29-s + 3.85e3i·31-s + (−7.23e3 − 648. i)33-s − 3.61e3·37-s + ⋯ |
L(s) = 1 | + (−0.0892 + 0.996i)3-s − 1.25·5-s + (−0.984 − 0.177i)9-s + 1.16i·11-s + 0.469i·13-s + (0.111 − 1.24i)15-s + 0.753·17-s + 1.33i·19-s + 1.93i·23-s + 0.563·25-s + (0.264 − 0.964i)27-s + 1.29i·29-s + 0.720i·31-s + (−1.15 − 0.103i)33-s − 0.434·37-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(−0.488+0.872i)Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)(−0.488+0.872i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
−0.488+0.872i
|
Analytic conductor: |
94.3056 |
Root analytic conductor: |
9.71111 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :5/2), −0.488+0.872i)
|
Particular Values
L(3) |
≈ |
0.8909922496 |
L(21) |
≈ |
0.8909922496 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.39−15.5i)T |
| 7 | 1 |
good | 5 | 1+69.8T+3.12e3T2 |
| 11 | 1−465.iT−1.61e5T2 |
| 13 | 1−285.iT−3.71e5T2 |
| 17 | 1−898.T+1.41e6T2 |
| 19 | 1−2.09e3iT−2.47e6T2 |
| 23 | 1−4.90e3iT−6.43e6T2 |
| 29 | 1−5.87e3iT−2.05e7T2 |
| 31 | 1−3.85e3iT−2.86e7T2 |
| 37 | 1+3.61e3T+6.93e7T2 |
| 41 | 1−1.71e4T+1.15e8T2 |
| 43 | 1+1.85e4T+1.47e8T2 |
| 47 | 1−2.42e3T+2.29e8T2 |
| 53 | 1−7.61e3iT−4.18e8T2 |
| 59 | 1+1.06e4T+7.14e8T2 |
| 61 | 1−1.56e4iT−8.44e8T2 |
| 67 | 1+2.97e3T+1.35e9T2 |
| 71 | 1−1.62e4iT−1.80e9T2 |
| 73 | 1−1.46e4iT−2.07e9T2 |
| 79 | 1+8.61e4T+3.07e9T2 |
| 83 | 1−2.74e3T+3.93e9T2 |
| 89 | 1−1.01e5T+5.58e9T2 |
| 97 | 1+2.34e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39512350896279161197536456910, −9.733150763832826412061566985746, −8.828478928837068092911129909519, −7.82544645233373747552826923453, −7.16569626793204863244131868543, −5.73802115678882106231296564021, −4.80765127272082477422119370976, −3.89265128049339003387854445969, −3.26832918691912257069371712532, −1.51040807852404602037953738804,
0.31006399939765151973950312930, 0.70588602950228795784702917118, 2.48874162263175791447334564673, 3.39241383492159490719642501602, 4.62257019196225831524784769352, 5.85136091702490945336723380382, 6.68355823184572880381317824421, 7.72396213987259566361029267738, 8.181350894227954265885153620129, 8.992134806611633503920996494205