L(s) = 1 | + (13.5 − 23.3i)3-s + (−120 − 207. i)5-s + (−364.5 − 631. i)9-s + (−351 + 607. i)11-s + 3.95e3·13-s − 6.48e3·15-s + (−1.70e3 + 2.95e3i)17-s + (−2.45e4 − 4.24e4i)19-s + (5.75e3 + 9.97e3i)23-s + (1.02e4 − 1.77e4i)25-s − 1.96e4·27-s + 4.96e4·29-s + (−5.66e4 + 9.81e4i)31-s + (9.47e3 + 1.64e4i)33-s + (3.34e4 + 5.79e4i)37-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (−0.429 − 0.743i)5-s + (−0.166 − 0.288i)9-s + (−0.0795 + 0.137i)11-s + 0.499·13-s − 0.495·15-s + (−0.0841 + 0.145i)17-s + (−0.820 − 1.42i)19-s + (0.0986 + 0.170i)23-s + (0.131 − 0.227i)25-s − 0.192·27-s + 0.378·29-s + (−0.341 + 0.591i)31-s + (0.0459 + 0.0795i)33-s + (0.108 + 0.188i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.08056292907\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08056292907\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-13.5 + 23.3i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (120 + 207. i)T + (-3.90e4 + 6.76e4i)T^{2} \) |
| 11 | \( 1 + (351 - 607. i)T + (-9.74e6 - 1.68e7i)T^{2} \) |
| 13 | \( 1 - 3.95e3T + 6.27e7T^{2} \) |
| 17 | \( 1 + (1.70e3 - 2.95e3i)T + (-2.05e8 - 3.55e8i)T^{2} \) |
| 19 | \( 1 + (2.45e4 + 4.24e4i)T + (-4.46e8 + 7.74e8i)T^{2} \) |
| 23 | \( 1 + (-5.75e3 - 9.97e3i)T + (-1.70e9 + 2.94e9i)T^{2} \) |
| 29 | \( 1 - 4.96e4T + 1.72e10T^{2} \) |
| 31 | \( 1 + (5.66e4 - 9.81e4i)T + (-1.37e10 - 2.38e10i)T^{2} \) |
| 37 | \( 1 + (-3.34e4 - 5.79e4i)T + (-4.74e10 + 8.22e10i)T^{2} \) |
| 41 | \( 1 - 3.60e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 7.65e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + (6.72e5 + 1.16e6i)T + (-2.53e11 + 4.38e11i)T^{2} \) |
| 53 | \( 1 + (1.79e5 - 3.10e5i)T + (-5.87e11 - 1.01e12i)T^{2} \) |
| 59 | \( 1 + (-4.65e5 + 8.05e5i)T + (-1.24e12 - 2.15e12i)T^{2} \) |
| 61 | \( 1 + (6.59e5 + 1.14e6i)T + (-1.57e12 + 2.72e12i)T^{2} \) |
| 67 | \( 1 + (9.46e5 - 1.63e6i)T + (-3.03e12 - 5.24e12i)T^{2} \) |
| 71 | \( 1 - 2.27e5T + 9.09e12T^{2} \) |
| 73 | \( 1 + (-3.92e5 + 6.79e5i)T + (-5.52e12 - 9.56e12i)T^{2} \) |
| 79 | \( 1 + (-1.05e6 - 1.81e6i)T + (-9.60e12 + 1.66e13i)T^{2} \) |
| 83 | \( 1 + 8.62e6T + 2.71e13T^{2} \) |
| 89 | \( 1 + (-2.95e6 - 5.11e6i)T + (-2.21e13 + 3.83e13i)T^{2} \) |
| 97 | \( 1 + 7.73e5T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.631132802688597421831654762873, −8.345724912714822295177923069242, −7.14363531953807893442976682750, −6.42402888367121847406509468878, −5.15954334004229563405030312439, −4.32460038403474607941705563049, −3.18619571830922931356354109628, −2.02827724711382770840567649591, −0.940644247256849907555213777761, −0.01572704086729964171158144476,
1.55018273444343400705910321363, 2.80271193523160402905173852618, 3.63061136955871261108282482774, 4.47470294099587718420934114880, 5.74609149205146222878056715020, 6.60056421081598846498107604421, 7.69380658638387869247095417606, 8.368760544321691989042565484949, 9.353823132220563114240320320678, 10.28565362324233627190455855973