Properties

Label 2-58800-1.1-c1-0-119
Degree 22
Conductor 5880058800
Sign 11
Analytic cond. 469.520469.520
Root an. cond. 21.668421.6684
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 4·11-s + 6·13-s + 2·17-s − 4·19-s + 8·23-s + 27-s − 2·29-s + 4·33-s + 10·37-s + 6·39-s + 6·41-s − 4·43-s + 2·51-s − 6·53-s − 4·57-s + 4·59-s − 6·61-s + 4·67-s + 8·69-s − 8·71-s + 10·73-s + 81-s + 4·83-s − 2·87-s + 6·89-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 1.20·11-s + 1.66·13-s + 0.485·17-s − 0.917·19-s + 1.66·23-s + 0.192·27-s − 0.371·29-s + 0.696·33-s + 1.64·37-s + 0.960·39-s + 0.937·41-s − 0.609·43-s + 0.280·51-s − 0.824·53-s − 0.529·57-s + 0.520·59-s − 0.768·61-s + 0.488·67-s + 0.963·69-s − 0.949·71-s + 1.17·73-s + 1/9·81-s + 0.439·83-s − 0.214·87-s + 0.635·89-s + ⋯

Functional equation

Λ(s)=(58800s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 58800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(58800s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 58800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 5880058800    =    24352722^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}
Sign: 11
Analytic conductor: 469.520469.520
Root analytic conductor: 21.668421.6684
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 58800, ( :1/2), 1)(2,\ 58800,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 4.6996627294.699662729
L(12)L(\frac12) \approx 4.6996627294.699662729
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1T 1 - T
5 1 1
7 1 1
good11 14T+pT2 1 - 4 T + p T^{2}
13 16T+pT2 1 - 6 T + p T^{2}
17 12T+pT2 1 - 2 T + p T^{2}
19 1+4T+pT2 1 + 4 T + p T^{2}
23 18T+pT2 1 - 8 T + p T^{2}
29 1+2T+pT2 1 + 2 T + p T^{2}
31 1+pT2 1 + p T^{2}
37 110T+pT2 1 - 10 T + p T^{2}
41 16T+pT2 1 - 6 T + p T^{2}
43 1+4T+pT2 1 + 4 T + p T^{2}
47 1+pT2 1 + p T^{2}
53 1+6T+pT2 1 + 6 T + p T^{2}
59 14T+pT2 1 - 4 T + p T^{2}
61 1+6T+pT2 1 + 6 T + p T^{2}
67 14T+pT2 1 - 4 T + p T^{2}
71 1+8T+pT2 1 + 8 T + p T^{2}
73 110T+pT2 1 - 10 T + p T^{2}
79 1+pT2 1 + p T^{2}
83 14T+pT2 1 - 4 T + p T^{2}
89 16T+pT2 1 - 6 T + p T^{2}
97 1+14T+pT2 1 + 14 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−14.31508379381776, −13.89526827647895, −13.29894000538157, −12.86758428338016, −12.53524797492079, −11.63141450063544, −11.28594800364901, −10.85506754917834, −10.27503806206922, −9.481668178293803, −9.138201192684047, −8.771463859551408, −8.122284022329673, −7.705188270599338, −6.875471343397471, −6.476897959143961, −6.011342564916520, −5.301987299563936, −4.427072856407022, −4.069563392223029, −3.403908307413966, −2.938893464297023, −2.020265449799034, −1.300367912137640, −0.8078845242002148, 0.8078845242002148, 1.300367912137640, 2.020265449799034, 2.938893464297023, 3.403908307413966, 4.069563392223029, 4.427072856407022, 5.301987299563936, 6.011342564916520, 6.476897959143961, 6.875471343397471, 7.705188270599338, 8.122284022329673, 8.771463859551408, 9.138201192684047, 9.481668178293803, 10.27503806206922, 10.85506754917834, 11.28594800364901, 11.63141450063544, 12.53524797492079, 12.86758428338016, 13.29894000538157, 13.89526827647895, 14.31508379381776

Graph of the ZZ-function along the critical line