L(s) = 1 | + (−2.82 − 12.8i)2-s + (−6.70 + 40.9i)3-s + (−98.2 + 45.4i)4-s + (−36.2 + 130. i)5-s + (543. − 29.4i)6-s + (400. − 379. i)7-s + (351. + 462. i)8-s + (−938. − 316. i)9-s + (1.77e3 + 96.3i)10-s + (−1.42e3 + 1.20e3i)11-s + (−1.20e3 − 4.32e3i)12-s + (15.4 + 45.9i)13-s + (−5.99e3 − 4.06e3i)14-s + (−5.10e3 − 2.35e3i)15-s + (454. − 534. i)16-s + (−404. − 382. i)17-s + ⋯ |
L(s) = 1 | + (−0.352 − 1.60i)2-s + (−0.248 + 1.51i)3-s + (−1.53 + 0.710i)4-s + (−0.290 + 1.04i)5-s + (2.51 − 0.136i)6-s + (1.16 − 1.10i)7-s + (0.687 + 0.904i)8-s + (−1.28 − 0.433i)9-s + (1.77 + 0.0963i)10-s + (−1.06 + 0.906i)11-s + (−0.695 − 2.50i)12-s + (0.00704 + 0.0209i)13-s + (−2.18 − 1.48i)14-s + (−1.51 − 0.699i)15-s + (0.110 − 0.130i)16-s + (−0.0822 − 0.0779i)17-s + ⋯ |
Λ(s)=(=(59s/2ΓC(s)L(s)(−0.980−0.196i)Λ(7−s)
Λ(s)=(=(59s/2ΓC(s+3)L(s)(−0.980−0.196i)Λ(1−s)
Degree: |
2 |
Conductor: |
59
|
Sign: |
−0.980−0.196i
|
Analytic conductor: |
13.5731 |
Root analytic conductor: |
3.68418 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ59(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 59, ( :3), −0.980−0.196i)
|
Particular Values
L(27) |
≈ |
0.0122277+0.123044i |
L(21) |
≈ |
0.0122277+0.123044i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 59 | 1+(1.28e5−1.60e5i)T |
good | 2 | 1+(2.82+12.8i)T+(−58.0+26.8i)T2 |
| 3 | 1+(6.70−40.9i)T+(−690.−232.i)T2 |
| 5 | 1+(36.2−130.i)T+(−1.33e4−8.05e3i)T2 |
| 7 | 1+(−400.+379.i)T+(6.36e3−1.17e5i)T2 |
| 11 | 1+(1.42e3−1.20e3i)T+(2.86e5−1.74e6i)T2 |
| 13 | 1+(−15.4−45.9i)T+(−3.84e6+2.92e6i)T2 |
| 17 | 1+(404.+382.i)T+(1.30e6+2.41e7i)T2 |
| 19 | 1+(3.05e3+7.67e3i)T+(−3.41e7+3.23e7i)T2 |
| 23 | 1+(2.12e3+1.95e4i)T+(−1.44e8+3.18e7i)T2 |
| 29 | 1+(2.56e4+5.63e3i)T+(5.39e8+2.49e8i)T2 |
| 31 | 1+(5.17e4+2.06e4i)T+(6.44e8+6.10e8i)T2 |
| 37 | 1+(−3.08e4+4.05e4i)T+(−6.86e8−2.47e9i)T2 |
| 41 | 1+(5.96e4+6.48e3i)T+(4.63e9+1.02e9i)T2 |
| 43 | 1+(−5.61e4−4.77e4i)T+(1.02e9+6.23e9i)T2 |
| 47 | 1+(−5.18e4+1.43e4i)T+(9.23e9−5.55e9i)T2 |
| 53 | 1+(−3.03e3−5.60e4i)T+(−2.20e10+2.39e9i)T2 |
| 61 | 1+(−5.19e3−2.35e4i)T+(−4.67e10+2.16e10i)T2 |
| 67 | 1+(1.01e5+1.33e5i)T+(−2.42e10+8.71e10i)T2 |
| 71 | 1+(−1.89e4−6.82e4i)T+(−1.09e11+6.60e10i)T2 |
| 73 | 1+(4.13e5+2.80e5i)T+(5.60e10+1.40e11i)T2 |
| 79 | 1+(−2.67e4−1.63e5i)T+(−2.30e11+7.76e10i)T2 |
| 83 | 1+(−1.38e5+7.34e4i)T+(1.83e11−2.70e11i)T2 |
| 89 | 1+(1.69e5−7.71e5i)T+(−4.51e11−2.08e11i)T2 |
| 97 | 1+(−1.42e6+9.64e5i)T+(3.08e11−7.73e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.02580396903947937898685662530, −11.39092648722880016383302449484, −10.64004095242776741133306282128, −10.53876617814802113466365221669, −9.183917601021547249236841687909, −7.49566503106718369491653363419, −4.73513090366247056201588688150, −3.93646941572441041755944167825, −2.41237913626229515419307968075, −0.05942118299399765262501772696,
1.61356285318745362349027305729, 5.30815218210106867742381652244, 5.80007540630520269729354747164, 7.52535299467922964068514748399, 8.160063440744229902876666486752, 8.868143233894852855715879498554, 11.41726538744578820507539586282, 12.50306835313968830044559452830, 13.46767620461895159982222944577, 14.61230325981254222590118665113