L(s) = 1 | + (2.64 + 11.9i)2-s + (7.84 − 47.8i)3-s + (−78.8 + 36.4i)4-s + (37.8 − 136. i)5-s + (595. − 32.2i)6-s + (−396. + 375. i)7-s + (−170. − 223. i)8-s + (−1.53e3 − 518. i)9-s + (1.73e3 + 94.0i)10-s + (−129. + 109. i)11-s + (1.12e3 + 4.06e3i)12-s + (−952. − 2.82e3i)13-s + (−5.55e3 − 3.76e3i)14-s + (−6.22e3 − 2.88e3i)15-s + (−1.36e3 + 1.60e3i)16-s + (−6.30e3 − 5.97e3i)17-s + ⋯ |
L(s) = 1 | + (0.330 + 1.49i)2-s + (0.290 − 1.77i)3-s + (−1.23 + 0.569i)4-s + (0.302 − 1.09i)5-s + (2.75 − 0.149i)6-s + (−1.15 + 1.09i)7-s + (−0.332 − 0.436i)8-s + (−2.11 − 0.711i)9-s + (1.73 + 0.0940i)10-s + (−0.0971 + 0.0825i)11-s + (0.652 + 2.35i)12-s + (−0.433 − 1.28i)13-s + (−2.02 − 1.37i)14-s + (−1.84 − 0.853i)15-s + (−0.333 + 0.392i)16-s + (−1.28 − 1.21i)17-s + ⋯ |
Λ(s)=(=(59s/2ΓC(s)L(s)(−0.329+0.944i)Λ(7−s)
Λ(s)=(=(59s/2ΓC(s+3)L(s)(−0.329+0.944i)Λ(1−s)
Degree: |
2 |
Conductor: |
59
|
Sign: |
−0.329+0.944i
|
Analytic conductor: |
13.5731 |
Root analytic conductor: |
3.68418 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ59(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 59, ( :3), −0.329+0.944i)
|
Particular Values
L(27) |
≈ |
0.581494−0.819162i |
L(21) |
≈ |
0.581494−0.819162i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 59 | 1+(−1.41e5−1.49e5i)T |
good | 2 | 1+(−2.64−11.9i)T+(−58.0+26.8i)T2 |
| 3 | 1+(−7.84+47.8i)T+(−690.−232.i)T2 |
| 5 | 1+(−37.8+136.i)T+(−1.33e4−8.05e3i)T2 |
| 7 | 1+(396.−375.i)T+(6.36e3−1.17e5i)T2 |
| 11 | 1+(129.−109.i)T+(2.86e5−1.74e6i)T2 |
| 13 | 1+(952.+2.82e3i)T+(−3.84e6+2.92e6i)T2 |
| 17 | 1+(6.30e3+5.97e3i)T+(1.30e6+2.41e7i)T2 |
| 19 | 1+(−2.95e3−7.41e3i)T+(−3.41e7+3.23e7i)T2 |
| 23 | 1+(1.02e3+9.41e3i)T+(−1.44e8+3.18e7i)T2 |
| 29 | 1+(1.82e4+4.01e3i)T+(5.39e8+2.49e8i)T2 |
| 31 | 1+(−1.65e4−6.57e3i)T+(6.44e8+6.10e8i)T2 |
| 37 | 1+(−4.36e4+5.74e4i)T+(−6.86e8−2.47e9i)T2 |
| 41 | 1+(−3.29e4−3.58e3i)T+(4.63e9+1.02e9i)T2 |
| 43 | 1+(3.32e4+2.82e4i)T+(1.02e9+6.23e9i)T2 |
| 47 | 1+(−3.03e4+8.43e3i)T+(9.23e9−5.55e9i)T2 |
| 53 | 1+(7.12e3+1.31e5i)T+(−2.20e10+2.39e9i)T2 |
| 61 | 1+(−5.34e4−2.42e5i)T+(−4.67e10+2.16e10i)T2 |
| 67 | 1+(6.60e4+8.69e4i)T+(−2.42e10+8.71e10i)T2 |
| 71 | 1+(8.73e4+3.14e5i)T+(−1.09e11+6.60e10i)T2 |
| 73 | 1+(−1.96e5−1.33e5i)T+(5.60e10+1.40e11i)T2 |
| 79 | 1+(−9.19e3−5.60e4i)T+(−2.30e11+7.76e10i)T2 |
| 83 | 1+(−6.68e4+3.54e4i)T+(1.83e11−2.70e11i)T2 |
| 89 | 1+(−2.39e5+1.08e6i)T+(−4.51e11−2.08e11i)T2 |
| 97 | 1+(2.96e5−2.01e5i)T+(3.08e11−7.73e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.32497415317668768887717170968, −12.94019070866074096578823603173, −12.09068205647013868684601639008, −9.214932181881270186590411779505, −8.361795498198403731606286462926, −7.28817848321328124780837141447, −6.15689575340908345779945122596, −5.37525916016264394760498408127, −2.46269839272148690933244813907, −0.33794619387501389664884068506,
2.60604704522752117570455150089, 3.64227754904575546111338967961, 4.45919732065856466355109146390, 6.68488248643407295116062817673, 9.324577760364064822153673786914, 9.885995974788860478302751084746, 10.77582477227486601669281361365, 11.32258764731085213188692794374, 13.27254580734297111853312915809, 14.00061572283069929013595079798