L(s) = 1 | + (−2.29 − 1.92i)3-s + (1.16 − 0.423i)5-s + (−1.37 + 0.501i)7-s + (1.03 + 5.84i)9-s + (3.02 + 5.23i)11-s + (−0.652 + 3.70i)13-s + (−3.48 − 1.26i)15-s + (−0.936 − 5.30i)17-s + (2.77 + 2.32i)19-s + (4.12 + 1.50i)21-s + (2.92 − 5.07i)23-s + (−2.65 + 2.22i)25-s + (4.39 − 7.61i)27-s + (2.60 + 4.50i)29-s + 2.33·31-s + ⋯ |
L(s) = 1 | + (−1.32 − 1.10i)3-s + (0.520 − 0.189i)5-s + (−0.521 + 0.189i)7-s + (0.343 + 1.94i)9-s + (0.912 + 1.57i)11-s + (−0.180 + 1.02i)13-s + (−0.899 − 0.327i)15-s + (−0.227 − 1.28i)17-s + (0.635 + 0.533i)19-s + (0.899 + 0.327i)21-s + (0.610 − 1.05i)23-s + (−0.530 + 0.445i)25-s + (0.845 − 1.46i)27-s + (0.483 + 0.836i)29-s + 0.419·31-s + ⋯ |
Λ(s)=(=(592s/2ΓC(s)L(s)(0.998−0.0521i)Λ(2−s)
Λ(s)=(=(592s/2ΓC(s+1/2)L(s)(0.998−0.0521i)Λ(1−s)
Degree: |
2 |
Conductor: |
592
= 24⋅37
|
Sign: |
0.998−0.0521i
|
Analytic conductor: |
4.72714 |
Root analytic conductor: |
2.17419 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ592(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 592, ( :1/2), 0.998−0.0521i)
|
Particular Values
L(1) |
≈ |
0.937750+0.0244601i |
L(21) |
≈ |
0.937750+0.0244601i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+(−5.43+2.73i)T |
good | 3 | 1+(2.29+1.92i)T+(0.520+2.95i)T2 |
| 5 | 1+(−1.16+0.423i)T+(3.83−3.21i)T2 |
| 7 | 1+(1.37−0.501i)T+(5.36−4.49i)T2 |
| 11 | 1+(−3.02−5.23i)T+(−5.5+9.52i)T2 |
| 13 | 1+(0.652−3.70i)T+(−12.2−4.44i)T2 |
| 17 | 1+(0.936+5.30i)T+(−15.9+5.81i)T2 |
| 19 | 1+(−2.77−2.32i)T+(3.29+18.7i)T2 |
| 23 | 1+(−2.92+5.07i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.60−4.50i)T+(−14.5+25.1i)T2 |
| 31 | 1−2.33T+31T2 |
| 41 | 1+(−0.173+0.983i)T+(−38.5−14.0i)T2 |
| 43 | 1−5.45T+43T2 |
| 47 | 1+(3.81−6.60i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−8.54−3.11i)T+(40.6+34.0i)T2 |
| 59 | 1+(7.89+2.87i)T+(45.1+37.9i)T2 |
| 61 | 1+(−0.810+4.59i)T+(−57.3−20.8i)T2 |
| 67 | 1+(0.757−0.275i)T+(51.3−43.0i)T2 |
| 71 | 1+(−10.6−8.93i)T+(12.3+69.9i)T2 |
| 73 | 1−7.11T+73T2 |
| 79 | 1+(−6.61+2.40i)T+(60.5−50.7i)T2 |
| 83 | 1+(−0.942−5.34i)T+(−77.9+28.3i)T2 |
| 89 | 1+(5.21+1.89i)T+(68.1+57.2i)T2 |
| 97 | 1+(5.35−9.28i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.93353690446046518461843682823, −9.677747425810671126369641901567, −9.272366426728922542824655465052, −7.61216681330711702648745984948, −6.83278053304944233501430132060, −6.42382327642804474640034119578, −5.27655715075896003541215605383, −4.45340553173839751552370635283, −2.34696036094569442975761936886, −1.21973427834495324668188788907,
0.74293730252705299474327550520, 3.20805818348863545423541603435, 4.06394832029989119243962835385, 5.35450682896020785427402767180, 6.00806931023344353080360595884, 6.56732965896653573965797679180, 8.164020246849354251016942201633, 9.308289036713100192202328238029, 9.957426636600081931997909105542, 10.68045797311217385263049085132