L(s) = 1 | + (−0.259 + 0.508i)2-s + (0.838 − 5.29i)3-s + (2.15 + 2.97i)4-s + (−3.73 + 3.32i)5-s + (2.47 + 1.79i)6-s + (1.66 + 1.66i)7-s + (−4.32 + 0.685i)8-s + (−18.7 − 6.09i)9-s + (−0.724 − 2.76i)10-s + (0.984 + 3.02i)11-s + (17.5 − 8.94i)12-s + (1.52 + 3.00i)13-s + (−1.27 + 0.414i)14-s + (14.4 + 22.5i)15-s + (−3.76 + 11.5i)16-s + (−2.34 − 14.7i)17-s + ⋯ |
L(s) = 1 | + (−0.129 + 0.254i)2-s + (0.279 − 1.76i)3-s + (0.539 + 0.743i)4-s + (−0.746 + 0.665i)5-s + (0.412 + 0.299i)6-s + (0.237 + 0.237i)7-s + (−0.541 + 0.0857i)8-s + (−2.08 − 0.677i)9-s + (−0.0724 − 0.276i)10-s + (0.0894 + 0.275i)11-s + (1.46 − 0.745i)12-s + (0.117 + 0.230i)13-s + (−0.0911 + 0.0296i)14-s + (0.965 + 1.50i)15-s + (−0.235 + 0.724i)16-s + (−0.137 − 0.869i)17-s + ⋯ |
Λ(s)=(=(25s/2ΓC(s)L(s)(0.933+0.358i)Λ(3−s)
Λ(s)=(=(25s/2ΓC(s+1)L(s)(0.933+0.358i)Λ(1−s)
Degree: |
2 |
Conductor: |
25
= 52
|
Sign: |
0.933+0.358i
|
Analytic conductor: |
0.681200 |
Root analytic conductor: |
0.825348 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ25(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 25, ( :1), 0.933+0.358i)
|
Particular Values
L(23) |
≈ |
0.914845−0.169521i |
L(21) |
≈ |
0.914845−0.169521i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(3.73−3.32i)T |
good | 2 | 1+(0.259−0.508i)T+(−2.35−3.23i)T2 |
| 3 | 1+(−0.838+5.29i)T+(−8.55−2.78i)T2 |
| 7 | 1+(−1.66−1.66i)T+49iT2 |
| 11 | 1+(−0.984−3.02i)T+(−97.8+71.1i)T2 |
| 13 | 1+(−1.52−3.00i)T+(−99.3+136.i)T2 |
| 17 | 1+(2.34+14.7i)T+(−274.+89.3i)T2 |
| 19 | 1+(−13.4+18.5i)T+(−111.−343.i)T2 |
| 23 | 1+(13.8+7.04i)T+(310.+427.i)T2 |
| 29 | 1+(−10.2−14.1i)T+(−259.+799.i)T2 |
| 31 | 1+(−9.99−7.25i)T+(296.+913.i)T2 |
| 37 | 1+(−0.734+0.373i)T+(804.−1.10e3i)T2 |
| 41 | 1+(8.67−26.7i)T+(−1.35e3−988.i)T2 |
| 43 | 1+(42.9−42.9i)T−1.84e3iT2 |
| 47 | 1+(−46.4−7.34i)T+(2.10e3+682.i)T2 |
| 53 | 1+(0.616−3.89i)T+(−2.67e3−868.i)T2 |
| 59 | 1+(−77.9−25.3i)T+(2.81e3+2.04e3i)T2 |
| 61 | 1+(−15.8−48.7i)T+(−3.01e3+2.18e3i)T2 |
| 67 | 1+(−11.9−75.3i)T+(−4.26e3+1.38e3i)T2 |
| 71 | 1+(−76.2+55.3i)T+(1.55e3−4.79e3i)T2 |
| 73 | 1+(101.+51.5i)T+(3.13e3+4.31e3i)T2 |
| 79 | 1+(47.6+65.6i)T+(−1.92e3+5.93e3i)T2 |
| 83 | 1+(−68.6+10.8i)T+(6.55e3−2.12e3i)T2 |
| 89 | 1+(33.4−10.8i)T+(6.40e3−4.65e3i)T2 |
| 97 | 1+(−4.45−0.705i)T+(8.94e3+2.90e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.77269721662134697504269848025, −16.13426490551208514013979157018, −14.74582716221486166377770890154, −13.43091884764077174760655272028, −12.07069510386075968658512467034, −11.49800322540929296285759227246, −8.519293910065167974980853494833, −7.42103830341100601788438132572, −6.66081862542100131176156565699, −2.74885216966418794152214705996,
3.83355975003627897744198810923, 5.46419068157988654446933675120, 8.329302941153338822005442376376, 9.723599696420477027562014881655, 10.72647457273992502234395117389, 11.83620797045898702595751049969, 14.18170209941814146718697479075, 15.32785479620744146128573703619, 15.92854892807496740964262716767, 17.00220438349511852264715183018