L(s) = 1 | + (0.972 − 0.495i)2-s + (0.872 − 0.138i)3-s + (−1.65 + 2.27i)4-s + (−2.66 − 4.23i)5-s + (0.779 − 0.566i)6-s + (1.62 + 1.62i)7-s + (−1.16 + 7.34i)8-s + (−7.81 + 2.54i)9-s + (−4.68 − 2.79i)10-s + (3.53 − 10.8i)11-s + (−1.12 + 2.20i)12-s + (7.63 + 3.89i)13-s + (2.39 + 0.776i)14-s + (−2.90 − 3.32i)15-s + (−0.963 − 2.96i)16-s + (25.1 + 3.98i)17-s + ⋯ |
L(s) = 1 | + (0.486 − 0.247i)2-s + (0.290 − 0.0460i)3-s + (−0.412 + 0.567i)4-s + (−0.532 − 0.846i)5-s + (0.129 − 0.0944i)6-s + (0.232 + 0.232i)7-s + (−0.145 + 0.917i)8-s + (−0.868 + 0.282i)9-s + (−0.468 − 0.279i)10-s + (0.320 − 0.987i)11-s + (−0.0938 + 0.184i)12-s + (0.587 + 0.299i)13-s + (0.170 + 0.0554i)14-s + (−0.193 − 0.221i)15-s + (−0.0602 − 0.185i)16-s + (1.47 + 0.234i)17-s + ⋯ |
Λ(s)=(=(25s/2ΓC(s)L(s)(0.981+0.193i)Λ(3−s)
Λ(s)=(=(25s/2ΓC(s+1)L(s)(0.981+0.193i)Λ(1−s)
Degree: |
2 |
Conductor: |
25
= 52
|
Sign: |
0.981+0.193i
|
Analytic conductor: |
0.681200 |
Root analytic conductor: |
0.825348 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ25(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 25, ( :1), 0.981+0.193i)
|
Particular Values
L(23) |
≈ |
1.06696−0.104475i |
L(21) |
≈ |
1.06696−0.104475i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.66+4.23i)T |
good | 2 | 1+(−0.972+0.495i)T+(2.35−3.23i)T2 |
| 3 | 1+(−0.872+0.138i)T+(8.55−2.78i)T2 |
| 7 | 1+(−1.62−1.62i)T+49iT2 |
| 11 | 1+(−3.53+10.8i)T+(−97.8−71.1i)T2 |
| 13 | 1+(−7.63−3.89i)T+(99.3+136.i)T2 |
| 17 | 1+(−25.1−3.98i)T+(274.+89.3i)T2 |
| 19 | 1+(5.60+7.71i)T+(−111.+343.i)T2 |
| 23 | 1+(5.39+10.5i)T+(−310.+427.i)T2 |
| 29 | 1+(−5.56+7.65i)T+(−259.−799.i)T2 |
| 31 | 1+(42.2−30.7i)T+(296.−913.i)T2 |
| 37 | 1+(21.6−42.4i)T+(−804.−1.10e3i)T2 |
| 41 | 1+(−16.6−51.2i)T+(−1.35e3+988.i)T2 |
| 43 | 1+(−46.5+46.5i)T−1.84e3iT2 |
| 47 | 1+(8.92+56.3i)T+(−2.10e3+682.i)T2 |
| 53 | 1+(17.7−2.81i)T+(2.67e3−868.i)T2 |
| 59 | 1+(13.2−4.30i)T+(2.81e3−2.04e3i)T2 |
| 61 | 1+(−0.671+2.06i)T+(−3.01e3−2.18e3i)T2 |
| 67 | 1+(−116.−18.4i)T+(4.26e3+1.38e3i)T2 |
| 71 | 1+(57.1+41.5i)T+(1.55e3+4.79e3i)T2 |
| 73 | 1+(−28.5−56.0i)T+(−3.13e3+4.31e3i)T2 |
| 79 | 1+(−19.9+27.4i)T+(−1.92e3−5.93e3i)T2 |
| 83 | 1+(7.27−45.9i)T+(−6.55e3−2.12e3i)T2 |
| 89 | 1+(30.3+9.84i)T+(6.40e3+4.65e3i)T2 |
| 97 | 1+(−10.7−67.9i)T+(−8.94e3+2.90e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.09031050092095685258334964200, −16.33608268298649404076872121318, −14.52941563581730054658962644616, −13.55077643561507349917876369398, −12.28373900826838493943046107872, −11.31096096045243929638036204193, −8.824028590629797724861334441435, −8.162261812495775806862796431063, −5.36767013064634774912873572999, −3.54955360399321777443784806305,
3.78551683894993114844835411628, 5.85932041774539738289013968267, 7.59625204027150619256792919361, 9.480997137802061516929645504705, 10.89094010768245319584072984656, 12.45954206701400894343342456306, 14.27257112577544554237107433762, 14.55601403703903303004904591631, 15.79404460772429460552614651469, 17.56637785696073194779884322767