L(s) = 1 | + (−1.22 − 1.22i)2-s + (1.22 − 1.22i)3-s − 1.00i·4-s − 2.99·6-s + (4.89 + 4.89i)7-s + (−6.12 + 6.12i)8-s + 6i·9-s − 3·11-s + (−1.22 − 1.22i)12-s + (7.34 − 7.34i)13-s − 11.9i·14-s + 10.9·16-s + (−13.4 − 13.4i)17-s + (7.34 − 7.34i)18-s + 5i·19-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.612i)2-s + (0.408 − 0.408i)3-s − 0.250i·4-s − 0.499·6-s + (0.699 + 0.699i)7-s + (−0.765 + 0.765i)8-s + 0.666i·9-s − 0.272·11-s + (−0.102 − 0.102i)12-s + (0.565 − 0.565i)13-s − 0.857i·14-s + 0.687·16-s + (−0.792 − 0.792i)17-s + (0.408 − 0.408i)18-s + 0.263i·19-s + ⋯ |
Λ(s)=(=(25s/2ΓC(s)L(s)(0.437+0.899i)Λ(3−s)
Λ(s)=(=(25s/2ΓC(s+1)L(s)(0.437+0.899i)Λ(1−s)
Degree: |
2 |
Conductor: |
25
= 52
|
Sign: |
0.437+0.899i
|
Analytic conductor: |
0.681200 |
Root analytic conductor: |
0.825348 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ25(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 25, ( :1), 0.437+0.899i)
|
Particular Values
L(23) |
≈ |
0.672853−0.420861i |
L(21) |
≈ |
0.672853−0.420861i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
good | 2 | 1+(1.22+1.22i)T+4iT2 |
| 3 | 1+(−1.22+1.22i)T−9iT2 |
| 7 | 1+(−4.89−4.89i)T+49iT2 |
| 11 | 1+3T+121T2 |
| 13 | 1+(−7.34+7.34i)T−169iT2 |
| 17 | 1+(13.4+13.4i)T+289iT2 |
| 19 | 1−5iT−361T2 |
| 23 | 1+(17.1−17.1i)T−529iT2 |
| 29 | 1+30iT−841T2 |
| 31 | 1+38T+961T2 |
| 37 | 1+(19.5+19.5i)T+1.36e3iT2 |
| 41 | 1−57T+1.68e3T2 |
| 43 | 1+(4.89−4.89i)T−1.84e3iT2 |
| 47 | 1+(7.34+7.34i)T+2.20e3iT2 |
| 53 | 1+(−31.8+31.8i)T−2.80e3iT2 |
| 59 | 1−90iT−3.48e3T2 |
| 61 | 1+28T+3.72e3T2 |
| 67 | 1+(−47.7−47.7i)T+4.48e3iT2 |
| 71 | 1−42T+5.04e3T2 |
| 73 | 1+(−13.4+13.4i)T−5.32e3iT2 |
| 79 | 1+80iT−6.24e3T2 |
| 83 | 1+(−111.+111.i)T−6.88e3iT2 |
| 89 | 1+15iT−7.92e3T2 |
| 97 | 1+(−53.8−53.8i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.80124358464963284926715165367, −15.87327121129670108706619144263, −14.61987166921431862955652160781, −13.38291394650940071904926706610, −11.72130267965928507532906959660, −10.65256669380755182035270122951, −9.075493128417653782841684094869, −7.902577928817560403427339720800, −5.50779105914296339937998810838, −2.18276126975121981967295505990,
3.96617731422108493669297013406, 6.66659017825642368793563998673, 8.181050810439558547923718676808, 9.231979411563966906372676961873, 10.87036483367697919382493644174, 12.57910233808340025768232932523, 14.17692961093489109108404805037, 15.35474335332985474713232506729, 16.42661081484645235263474578445, 17.56119575775530289336883258965