L(s) = 1 | + (2.23 + 2i)3-s + (2.23 − 4.47i)5-s + 8i·7-s + (1.00 + 8.94i)9-s − 8.94i·11-s − 12i·13-s + (13.9 − 5.52i)15-s − 31.3·17-s − 6·19-s + (−16 + 17.8i)21-s + 4.47·23-s + (−15.0 − 20.0i)25-s + (−15.6 + 22.0i)27-s − 26.8i·29-s + 34·31-s + ⋯ |
L(s) = 1 | + (0.745 + 0.666i)3-s + (0.447 − 0.894i)5-s + 1.14i·7-s + (0.111 + 0.993i)9-s − 0.813i·11-s − 0.923i·13-s + (0.929 − 0.368i)15-s − 1.84·17-s − 0.315·19-s + (−0.761 + 0.851i)21-s + 0.194·23-s + (−0.600 − 0.800i)25-s + (−0.579 + 0.814i)27-s − 0.925i·29-s + 1.09·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.929 - 0.368i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.929 - 0.368i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.45178 + 0.277265i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.45178 + 0.277265i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.23 - 2i)T \) |
| 5 | \( 1 + (-2.23 + 4.47i)T \) |
good | 7 | \( 1 - 8iT - 49T^{2} \) |
| 11 | \( 1 + 8.94iT - 121T^{2} \) |
| 13 | \( 1 + 12iT - 169T^{2} \) |
| 17 | \( 1 + 31.3T + 289T^{2} \) |
| 19 | \( 1 + 6T + 361T^{2} \) |
| 23 | \( 1 - 4.47T + 529T^{2} \) |
| 29 | \( 1 + 26.8iT - 841T^{2} \) |
| 31 | \( 1 - 34T + 961T^{2} \) |
| 37 | \( 1 - 44iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 17.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 28iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 4.47T + 2.20e3T^{2} \) |
| 53 | \( 1 - 40.2T + 2.80e3T^{2} \) |
| 59 | \( 1 - 98.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 74T + 3.72e3T^{2} \) |
| 67 | \( 1 + 92iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 53.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 56iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 78T + 6.24e3T^{2} \) |
| 83 | \( 1 + 102.T + 6.88e3T^{2} \) |
| 89 | \( 1 + 17.8iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 32iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.20792972282815476015571279133, −13.68175108496696622664396584733, −12.96917461784470061224317786048, −11.48153338687204257967085112029, −10.05556224265148204549474634162, −8.850276241935608498957155139665, −8.347297233587131691794432032574, −5.94137585119197281268068358720, −4.62424247316482503301892295422, −2.58186362428924905480915729866,
2.17131723727890984097766088136, 4.08223328678377031679040300796, 6.70381367980156212657825159348, 7.18236054184151654360121377292, 8.880679047898305080751982526464, 10.12245583978878001683934168376, 11.30211096781844578266825975358, 12.87789159468169518770330368802, 13.78758732139391218205172937444, 14.47621702430565846663890279212