L(s) = 1 | + (−0.618 − 1.61i)3-s + 2.23·5-s + (−1 − i)7-s + (−2.23 + 2.00i)9-s + 4.47i·11-s + (−3 + 3i)13-s + (−1.38 − 3.61i)15-s + (2.23 − 2.23i)17-s − 2i·19-s + (−1 + 2.23i)21-s + (−2.23 − 2.23i)23-s + 5.00·25-s + (4.61 + 2.38i)27-s − 4.47·29-s + 4·31-s + ⋯ |
L(s) = 1 | + (−0.356 − 0.934i)3-s + 0.999·5-s + (−0.377 − 0.377i)7-s + (−0.745 + 0.666i)9-s + 1.34i·11-s + (−0.832 + 0.832i)13-s + (−0.356 − 0.934i)15-s + (0.542 − 0.542i)17-s − 0.458i·19-s + (−0.218 + 0.487i)21-s + (−0.466 − 0.466i)23-s + 1.00·25-s + (0.888 + 0.458i)27-s − 0.830·29-s + 0.718·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.794 + 0.607i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.794 + 0.607i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.806615 - 0.272846i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.806615 - 0.272846i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.618 + 1.61i)T \) |
| 5 | \( 1 - 2.23T \) |
good | 7 | \( 1 + (1 + i)T + 7iT^{2} \) |
| 11 | \( 1 - 4.47iT - 11T^{2} \) |
| 13 | \( 1 + (3 - 3i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.23 + 2.23i)T - 17iT^{2} \) |
| 19 | \( 1 + 2iT - 19T^{2} \) |
| 23 | \( 1 + (2.23 + 2.23i)T + 23iT^{2} \) |
| 29 | \( 1 + 4.47T + 29T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + (3 + 3i)T + 37iT^{2} \) |
| 41 | \( 1 + 8.94iT - 41T^{2} \) |
| 43 | \( 1 + (3 - 3i)T - 43iT^{2} \) |
| 47 | \( 1 + (6.70 - 6.70i)T - 47iT^{2} \) |
| 53 | \( 1 + (-2.23 - 2.23i)T + 53iT^{2} \) |
| 59 | \( 1 - 8.94T + 59T^{2} \) |
| 61 | \( 1 + 6T + 61T^{2} \) |
| 67 | \( 1 + (1 + i)T + 67iT^{2} \) |
| 71 | \( 1 + 4.47iT - 71T^{2} \) |
| 73 | \( 1 + (-1 + i)T - 73iT^{2} \) |
| 79 | \( 1 + 6iT - 79T^{2} \) |
| 83 | \( 1 + (-6.70 - 6.70i)T + 83iT^{2} \) |
| 89 | \( 1 - 4.47T + 89T^{2} \) |
| 97 | \( 1 + (-9 - 9i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.66432242693590277964814384018, −13.77601355339610360692790454073, −12.77369705294605892431783409484, −11.88790023898679746609720468116, −10.31517972439760862111967515152, −9.299186274524804035335087601220, −7.41727364560654563618102525190, −6.54806518347674944274692276756, −5.00569969556774291250750573922, −2.15777231959226116393597609132,
3.21855912675630881585355836082, 5.33541712393311827841809943575, 6.14693231226485150864417260201, 8.396741378868973744267835407080, 9.684992825696092715715463123807, 10.39772960952919280695046285176, 11.72583818831365035929475099548, 13.04250042223342786131471706537, 14.25961440418616946764541746827, 15.23423930823948324375620100041