L(s) = 1 | + (−0.618 − 1.61i)3-s + 2.23·5-s + (−1 − i)7-s + (−2.23 + 2.00i)9-s + 4.47i·11-s + (−3 + 3i)13-s + (−1.38 − 3.61i)15-s + (2.23 − 2.23i)17-s − 2i·19-s + (−1 + 2.23i)21-s + (−2.23 − 2.23i)23-s + 5.00·25-s + (4.61 + 2.38i)27-s − 4.47·29-s + 4·31-s + ⋯ |
L(s) = 1 | + (−0.356 − 0.934i)3-s + 0.999·5-s + (−0.377 − 0.377i)7-s + (−0.745 + 0.666i)9-s + 1.34i·11-s + (−0.832 + 0.832i)13-s + (−0.356 − 0.934i)15-s + (0.542 − 0.542i)17-s − 0.458i·19-s + (−0.218 + 0.487i)21-s + (−0.466 − 0.466i)23-s + 1.00·25-s + (0.888 + 0.458i)27-s − 0.830·29-s + 0.718·31-s + ⋯ |
Λ(s)=(=(60s/2ΓC(s)L(s)(0.794+0.607i)Λ(2−s)
Λ(s)=(=(60s/2ΓC(s+1/2)L(s)(0.794+0.607i)Λ(1−s)
Degree: |
2 |
Conductor: |
60
= 22⋅3⋅5
|
Sign: |
0.794+0.607i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ60(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 60, ( :1/2), 0.794+0.607i)
|
Particular Values
L(1) |
≈ |
0.806615−0.272846i |
L(21) |
≈ |
0.806615−0.272846i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.618+1.61i)T |
| 5 | 1−2.23T |
good | 7 | 1+(1+i)T+7iT2 |
| 11 | 1−4.47iT−11T2 |
| 13 | 1+(3−3i)T−13iT2 |
| 17 | 1+(−2.23+2.23i)T−17iT2 |
| 19 | 1+2iT−19T2 |
| 23 | 1+(2.23+2.23i)T+23iT2 |
| 29 | 1+4.47T+29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+(3+3i)T+37iT2 |
| 41 | 1+8.94iT−41T2 |
| 43 | 1+(3−3i)T−43iT2 |
| 47 | 1+(6.70−6.70i)T−47iT2 |
| 53 | 1+(−2.23−2.23i)T+53iT2 |
| 59 | 1−8.94T+59T2 |
| 61 | 1+6T+61T2 |
| 67 | 1+(1+i)T+67iT2 |
| 71 | 1+4.47iT−71T2 |
| 73 | 1+(−1+i)T−73iT2 |
| 79 | 1+6iT−79T2 |
| 83 | 1+(−6.70−6.70i)T+83iT2 |
| 89 | 1−4.47T+89T2 |
| 97 | 1+(−9−9i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.66432242693590277964814384018, −13.77601355339610360692790454073, −12.77369705294605892431783409484, −11.88790023898679746609720468116, −10.31517972439760862111967515152, −9.299186274524804035335087601220, −7.41727364560654563618102525190, −6.54806518347674944274692276756, −5.00569969556774291250750573922, −2.15777231959226116393597609132,
3.21855912675630881585355836082, 5.33541712393311827841809943575, 6.14693231226485150864417260201, 8.396741378868973744267835407080, 9.684992825696092715715463123807, 10.39772960952919280695046285176, 11.72583818831365035929475099548, 13.04250042223342786131471706537, 14.25961440418616946764541746827, 15.23423930823948324375620100041