L(s) = 1 | + (−1.52 + 1.29i)2-s + 1.73·3-s + (0.637 − 3.94i)4-s + (4.27 + 2.59i)5-s + (−2.63 + 2.24i)6-s + 0.837·7-s + (4.14 + 6.83i)8-s + 2.99·9-s + (−9.87 + 1.59i)10-s + 15.7i·11-s + (1.10 − 6.83i)12-s − 5.18i·13-s + (−1.27 + 1.08i)14-s + (7.40 + 4.49i)15-s + (−15.1 − 5.03i)16-s − 27.3i·17-s + ⋯ |
L(s) = 1 | + (−0.761 + 0.648i)2-s + 0.577·3-s + (0.159 − 0.987i)4-s + (0.854 + 0.518i)5-s + (−0.439 + 0.374i)6-s + 0.119·7-s + (0.518 + 0.854i)8-s + 0.333·9-s + (−0.987 + 0.159i)10-s + 1.43i·11-s + (0.0920 − 0.569i)12-s − 0.398i·13-s + (−0.0910 + 0.0775i)14-s + (0.493 + 0.299i)15-s + (−0.949 − 0.314i)16-s − 1.60i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.648 - 0.761i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.648 - 0.761i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.999888 + 0.461884i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.999888 + 0.461884i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.52 - 1.29i)T \) |
| 3 | \( 1 - 1.73T \) |
| 5 | \( 1 + (-4.27 - 2.59i)T \) |
good | 7 | \( 1 - 0.837T + 49T^{2} \) |
| 11 | \( 1 - 15.7iT - 121T^{2} \) |
| 13 | \( 1 + 5.18iT - 169T^{2} \) |
| 17 | \( 1 + 27.3iT - 289T^{2} \) |
| 19 | \( 1 + 17.9iT - 361T^{2} \) |
| 23 | \( 1 + 19.1T + 529T^{2} \) |
| 29 | \( 1 + 45.6T + 841T^{2} \) |
| 31 | \( 1 + 13.6iT - 961T^{2} \) |
| 37 | \( 1 - 15.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 13.2T + 1.68e3T^{2} \) |
| 43 | \( 1 - 27.9T + 1.84e3T^{2} \) |
| 47 | \( 1 + 55.6T + 2.20e3T^{2} \) |
| 53 | \( 1 - 15.5iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 87.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 38T + 3.72e3T^{2} \) |
| 67 | \( 1 - 92.2T + 4.48e3T^{2} \) |
| 71 | \( 1 - 130. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 54.7iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 13.6iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 59.0T + 6.88e3T^{2} \) |
| 89 | \( 1 - 39.8T + 7.92e3T^{2} \) |
| 97 | \( 1 - 168. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.99340960891530776773131741442, −14.22527848756251541860591268488, −13.12520099753244118854640497809, −11.25901092296721083301447069403, −9.844720747989565891884421879196, −9.377694814379083670399414741513, −7.69537566720917626542710762451, −6.76390497164608425220034557678, −5.09574977081002269468318713733, −2.24036874985020074972194857390,
1.77107311513187937728737987597, 3.72819777884412453162754378647, 6.06231484544028540828553644927, 8.040969287720339438543559879528, 8.838233453312031952792226007468, 9.948824424558109592484640858801, 11.04265271036653657177746224578, 12.50493862133201825103804860246, 13.39984026842115638375473390368, 14.46604111881252011939755318407