L(s) = 1 | + (0.656 + 1.88i)2-s + 1.73·3-s + (−3.13 + 2.48i)4-s + (−3.27 + 3.77i)5-s + (1.13 + 3.27i)6-s + 9.55·7-s + (−6.74 − 4.29i)8-s + 2.99·9-s + (−9.28 − 3.70i)10-s − 9.92i·11-s + (−5.43 + 4.29i)12-s − 7.55i·13-s + (6.27 + 18.0i)14-s + (−5.67 + 6.54i)15-s + (3.68 − 15.5i)16-s + 17.1i·17-s + ⋯ |
L(s) = 1 | + (0.328 + 0.944i)2-s + 0.577·3-s + (−0.784 + 0.620i)4-s + (−0.654 + 0.755i)5-s + (0.189 + 0.545i)6-s + 1.36·7-s + (−0.843 − 0.537i)8-s + 0.333·9-s + (−0.928 − 0.370i)10-s − 0.902i·11-s + (−0.452 + 0.358i)12-s − 0.581i·13-s + (0.448 + 1.28i)14-s + (−0.378 + 0.436i)15-s + (0.230 − 0.973i)16-s + 1.01i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0450 - 0.998i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0450 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.07195 + 1.02473i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07195 + 1.02473i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.656 - 1.88i)T \) |
| 3 | \( 1 - 1.73T \) |
| 5 | \( 1 + (3.27 - 3.77i)T \) |
good | 7 | \( 1 - 9.55T + 49T^{2} \) |
| 11 | \( 1 + 9.92iT - 121T^{2} \) |
| 13 | \( 1 + 7.55iT - 169T^{2} \) |
| 17 | \( 1 - 17.1iT - 289T^{2} \) |
| 19 | \( 1 + 26.1iT - 361T^{2} \) |
| 23 | \( 1 + 1.67T + 529T^{2} \) |
| 29 | \( 1 + 0.350T + 841T^{2} \) |
| 31 | \( 1 - 46.0iT - 961T^{2} \) |
| 37 | \( 1 - 22.6iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 77.2T + 1.68e3T^{2} \) |
| 43 | \( 1 + 41.7T + 1.84e3T^{2} \) |
| 47 | \( 1 - 14.0T + 2.20e3T^{2} \) |
| 53 | \( 1 - 22.6iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 94.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 38T + 3.72e3T^{2} \) |
| 67 | \( 1 + 29.8T + 4.48e3T^{2} \) |
| 71 | \( 1 + 7.19iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 34.3iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 46.0iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 24.1T + 6.88e3T^{2} \) |
| 89 | \( 1 - 100.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 131. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.03719153622697507577899352432, −14.30524887099817242193542668693, −13.32921610242223139309509579713, −11.80537173687935362383330555568, −10.60724053252316920222639707422, −8.596739074861972747520513027468, −8.009684354705356939162922559445, −6.72641944700508647733971289322, −4.94337561389568052467302108314, −3.37123330768847173465987819710,
1.78676721456718306322720195618, 4.05306091365102585056042690753, 5.06245046059594834524209294761, 7.70241667998069432171540694033, 8.771552468125978852607259120999, 9.967447050929617424449558024446, 11.51754396703250652407584911203, 12.11829963712505594469597310578, 13.40558127287845532450303828991, 14.46850310442382004915156459574