L(s) = 1 | + (1.73 + i)2-s + 1.73·3-s + (1.99 + 3.46i)4-s − 5i·5-s + (2.99 + 1.73i)6-s − 10.3·7-s + 7.99i·8-s + 2.99·9-s + (5 − 8.66i)10-s + 10.3i·11-s + (3.46 + 5.99i)12-s − 18i·13-s + (−18 − 10.3i)14-s − 8.66i·15-s + (−8 + 13.8i)16-s + 10i·17-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + 0.577·3-s + (0.499 + 0.866i)4-s − i·5-s + (0.499 + 0.288i)6-s − 1.48·7-s + 0.999i·8-s + 0.333·9-s + (0.5 − 0.866i)10-s + 0.944i·11-s + (0.288 + 0.499i)12-s − 1.38i·13-s + (−1.28 − 0.742i)14-s − 0.577i·15-s + (−0.5 + 0.866i)16-s + 0.588i·17-s + ⋯ |
Λ(s)=(=(60s/2ΓC(s)L(s)(0.866−0.5i)Λ(3−s)
Λ(s)=(=(60s/2ΓC(s+1)L(s)(0.866−0.5i)Λ(1−s)
Degree: |
2 |
Conductor: |
60
= 22⋅3⋅5
|
Sign: |
0.866−0.5i
|
Analytic conductor: |
1.63488 |
Root analytic conductor: |
1.27862 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ60(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 60, ( :1), 0.866−0.5i)
|
Particular Values
L(23) |
≈ |
1.85513+0.497081i |
L(21) |
≈ |
1.85513+0.497081i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.73−i)T |
| 3 | 1−1.73T |
| 5 | 1+5iT |
good | 7 | 1+10.3T+49T2 |
| 11 | 1−10.3iT−121T2 |
| 13 | 1+18iT−169T2 |
| 17 | 1−10iT−289T2 |
| 19 | 1+13.8iT−361T2 |
| 23 | 1−6.92T+529T2 |
| 29 | 1−36T+841T2 |
| 31 | 1+6.92iT−961T2 |
| 37 | 1−54iT−1.36e3T2 |
| 41 | 1−18T+1.68e3T2 |
| 43 | 1−20.7T+1.84e3T2 |
| 47 | 1+2.20e3T2 |
| 53 | 1−26iT−2.80e3T2 |
| 59 | 1−31.1iT−3.48e3T2 |
| 61 | 1+74T+3.72e3T2 |
| 67 | 1+41.5T+4.48e3T2 |
| 71 | 1+103.iT−5.04e3T2 |
| 73 | 1+36iT−5.32e3T2 |
| 79 | 1+90.0iT−6.24e3T2 |
| 83 | 1+90.0T+6.88e3T2 |
| 89 | 1−18T+7.92e3T2 |
| 97 | 1+72iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.19727982633406335003594988742, −13.56578440478616414484173606680, −12.88113925322346961057012887202, −12.26720916770949534475969984552, −10.17171427084914204247436510682, −8.878908673860368783240290797367, −7.60897122852066003840228852115, −6.18785581928845022646909641453, −4.63458114106254751109070966319, −3.04697893126555157947514251848,
2.73947392994343412870070891116, 3.82152555811029791515926039426, 6.12348328898362290817991877767, 7.02873970708748645772864447080, 9.244690731137069458376173257719, 10.24941218672404963073890935219, 11.44004042588776171888541551729, 12.66395745557934144883157750148, 13.88261097351605199089322512916, 14.27689735493798379471524957053