L(s) = 1 | + (1.11 + 0.866i)2-s − 1.73i·3-s + (0.500 + 1.93i)4-s − 2.23·5-s + (1.49 − 1.93i)6-s + (−1.11 + 2.59i)8-s − 2.99·9-s + (−2.50 − 1.93i)10-s + (3.35 − 0.866i)12-s + 3.87i·15-s + (−3.5 + 1.93i)16-s + 4.47·17-s + (−3.35 − 2.59i)18-s − 7.74i·19-s + (−1.11 − 4.33i)20-s + ⋯ |
L(s) = 1 | + (0.790 + 0.612i)2-s − 0.999i·3-s + (0.250 + 0.968i)4-s − 0.999·5-s + (0.612 − 0.790i)6-s + (−0.395 + 0.918i)8-s − 0.999·9-s + (−0.790 − 0.612i)10-s + (0.968 − 0.250i)12-s + 1.00i·15-s + (−0.875 + 0.484i)16-s + 1.08·17-s + (−0.790 − 0.612i)18-s − 1.77i·19-s + (−0.250 − 0.968i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.10189 + 0.139958i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.10189 + 0.139958i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.11 - 0.866i)T \) |
| 3 | \( 1 + 1.73iT \) |
| 5 | \( 1 + 2.23T \) |
good | 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 - 4.47T + 17T^{2} \) |
| 19 | \( 1 + 7.74iT - 19T^{2} \) |
| 23 | \( 1 - 3.46iT - 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 7.74iT - 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + 10.3iT - 47T^{2} \) |
| 53 | \( 1 + 4.47T + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 + 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 - 7.74iT - 79T^{2} \) |
| 83 | \( 1 + 3.46iT - 83T^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.05036557585281203836587496349, −14.01906401124226464397554511700, −12.96969218899520038325655249781, −12.05063592837146378367776714785, −11.21786645245511680209390523208, −8.710604288240186882615011007122, −7.62130075998172126003502019318, −6.75590916740167205077218524161, −5.11991821723020958559461200269, −3.21612165045091494677779403163,
3.34562197376954970251902214197, 4.44720620051296434479123125516, 5.91230804043502411888542382903, 7.997428208638764822405330422004, 9.652140086505478420732511583620, 10.66466370514893032831262775356, 11.69263790237918546626704841057, 12.57248072451275670816841051627, 14.27361460814636433910119904715, 14.85454371831900041373055145068