L(s) = 1 | + (1.11 + 0.866i)2-s − 1.73i·3-s + (0.500 + 1.93i)4-s − 2.23·5-s + (1.49 − 1.93i)6-s + (−1.11 + 2.59i)8-s − 2.99·9-s + (−2.50 − 1.93i)10-s + (3.35 − 0.866i)12-s + 3.87i·15-s + (−3.5 + 1.93i)16-s + 4.47·17-s + (−3.35 − 2.59i)18-s − 7.74i·19-s + (−1.11 − 4.33i)20-s + ⋯ |
L(s) = 1 | + (0.790 + 0.612i)2-s − 0.999i·3-s + (0.250 + 0.968i)4-s − 0.999·5-s + (0.612 − 0.790i)6-s + (−0.395 + 0.918i)8-s − 0.999·9-s + (−0.790 − 0.612i)10-s + (0.968 − 0.250i)12-s + 1.00i·15-s + (−0.875 + 0.484i)16-s + 1.08·17-s + (−0.790 − 0.612i)18-s − 1.77i·19-s + (−0.250 − 0.968i)20-s + ⋯ |
Λ(s)=(=(60s/2ΓC(s)L(s)(0.968−0.250i)Λ(2−s)
Λ(s)=(=(60s/2ΓC(s+1/2)L(s)(0.968−0.250i)Λ(1−s)
Degree: |
2 |
Conductor: |
60
= 22⋅3⋅5
|
Sign: |
0.968−0.250i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ60(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 60, ( :1/2), 0.968−0.250i)
|
Particular Values
L(1) |
≈ |
1.10189+0.139958i |
L(21) |
≈ |
1.10189+0.139958i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.11−0.866i)T |
| 3 | 1+1.73iT |
| 5 | 1+2.23T |
good | 7 | 1+7T2 |
| 11 | 1+11T2 |
| 13 | 1−13T2 |
| 17 | 1−4.47T+17T2 |
| 19 | 1+7.74iT−19T2 |
| 23 | 1−3.46iT−23T2 |
| 29 | 1−29T2 |
| 31 | 1−7.74iT−31T2 |
| 37 | 1−37T2 |
| 41 | 1−41T2 |
| 43 | 1+43T2 |
| 47 | 1+10.3iT−47T2 |
| 53 | 1+4.47T+53T2 |
| 59 | 1+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1+67T2 |
| 71 | 1+71T2 |
| 73 | 1−73T2 |
| 79 | 1−7.74iT−79T2 |
| 83 | 1+3.46iT−83T2 |
| 89 | 1−89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.05036557585281203836587496349, −14.01906401124226464397554511700, −12.96969218899520038325655249781, −12.05063592837146378367776714785, −11.21786645245511680209390523208, −8.710604288240186882615011007122, −7.62130075998172126003502019318, −6.75590916740167205077218524161, −5.11991821723020958559461200269, −3.21612165045091494677779403163,
3.34562197376954970251902214197, 4.44720620051296434479123125516, 5.91230804043502411888542382903, 7.997428208638764822405330422004, 9.652140086505478420732511583620, 10.66466370514893032831262775356, 11.69263790237918546626704841057, 12.57248072451275670816841051627, 14.27361460814636433910119904715, 14.85454371831900041373055145068