Properties

Label 2-600-1.1-c1-0-3
Degree $2$
Conductor $600$
Sign $1$
Analytic cond. $4.79102$
Root an. cond. $2.18884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s + 9-s + 2·11-s + 2·13-s + 6·17-s + 8·19-s − 2·21-s − 4·23-s + 27-s + 8·29-s + 2·33-s − 10·37-s + 2·39-s + 2·41-s − 12·43-s − 3·49-s + 6·51-s + 10·53-s + 8·57-s − 6·59-s + 2·61-s − 2·63-s − 8·67-s − 4·69-s − 4·71-s + 4·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s + 1/3·9-s + 0.603·11-s + 0.554·13-s + 1.45·17-s + 1.83·19-s − 0.436·21-s − 0.834·23-s + 0.192·27-s + 1.48·29-s + 0.348·33-s − 1.64·37-s + 0.320·39-s + 0.312·41-s − 1.82·43-s − 3/7·49-s + 0.840·51-s + 1.37·53-s + 1.05·57-s − 0.781·59-s + 0.256·61-s − 0.251·63-s − 0.977·67-s − 0.481·69-s − 0.474·71-s + 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(4.79102\)
Root analytic conductor: \(2.18884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.830138573\)
\(L(\frac12)\) \(\approx\) \(1.830138573\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.30955522254228694838792930706, −9.855081450656987646239307434163, −8.956494428187784870875332301622, −8.065360238159720695767955399926, −7.15109339700237674664040328399, −6.20989492713295015084463586012, −5.14891659899478257407149456127, −3.68478607534762393615004752252, −3.07956734277475342949311345221, −1.32041558029711473446320898964, 1.32041558029711473446320898964, 3.07956734277475342949311345221, 3.68478607534762393615004752252, 5.14891659899478257407149456127, 6.20989492713295015084463586012, 7.15109339700237674664040328399, 8.065360238159720695767955399926, 8.956494428187784870875332301622, 9.855081450656987646239307434163, 10.30955522254228694838792930706

Graph of the $Z$-function along the critical line