Properties

Label 2-600-1.1-c1-0-8
Degree $2$
Conductor $600$
Sign $-1$
Analytic cond. $4.79102$
Root an. cond. $2.18884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5·7-s + 9-s − 6·11-s − 3·13-s − 2·17-s + 19-s − 5·21-s − 2·23-s + 27-s + 6·29-s + 3·31-s − 6·33-s − 6·37-s − 3·39-s + 4·41-s + 11·43-s − 10·47-s + 18·49-s − 2·51-s − 8·53-s + 57-s − 6·59-s + 3·61-s − 5·63-s − 67-s − 2·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.88·7-s + 1/3·9-s − 1.80·11-s − 0.832·13-s − 0.485·17-s + 0.229·19-s − 1.09·21-s − 0.417·23-s + 0.192·27-s + 1.11·29-s + 0.538·31-s − 1.04·33-s − 0.986·37-s − 0.480·39-s + 0.624·41-s + 1.67·43-s − 1.45·47-s + 18/7·49-s − 0.280·51-s − 1.09·53-s + 0.132·57-s − 0.781·59-s + 0.384·61-s − 0.629·63-s − 0.122·67-s − 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(4.79102\)
Root analytic conductor: \(2.18884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
good7 \( 1 + 5 T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 + 3 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 3 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 - 11 T + p T^{2} \)
47 \( 1 + 10 T + p T^{2} \)
53 \( 1 + 8 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 3 T + p T^{2} \)
67 \( 1 + T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 16 T + p T^{2} \)
97 \( 1 + 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01640260119628208124792470973, −9.573634131463927078112432516263, −8.483378982015133633479563111090, −7.55110806087691558837157186820, −6.72557170085953961720882600963, −5.70500717305478856615746032890, −4.50519787498977221160424199992, −3.11187956794533611218111257703, −2.55892028284702124429993107097, 0, 2.55892028284702124429993107097, 3.11187956794533611218111257703, 4.50519787498977221160424199992, 5.70500717305478856615746032890, 6.72557170085953961720882600963, 7.55110806087691558837157186820, 8.483378982015133633479563111090, 9.573634131463927078112432516263, 10.01640260119628208124792470973

Graph of the $Z$-function along the critical line