L(s) = 1 | + 3-s − 5·7-s + 9-s − 6·11-s − 3·13-s − 2·17-s + 19-s − 5·21-s − 2·23-s + 27-s + 6·29-s + 3·31-s − 6·33-s − 6·37-s − 3·39-s + 4·41-s + 11·43-s − 10·47-s + 18·49-s − 2·51-s − 8·53-s + 57-s − 6·59-s + 3·61-s − 5·63-s − 67-s − 2·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.88·7-s + 1/3·9-s − 1.80·11-s − 0.832·13-s − 0.485·17-s + 0.229·19-s − 1.09·21-s − 0.417·23-s + 0.192·27-s + 1.11·29-s + 0.538·31-s − 1.04·33-s − 0.986·37-s − 0.480·39-s + 0.624·41-s + 1.67·43-s − 1.45·47-s + 18/7·49-s − 0.280·51-s − 1.09·53-s + 0.132·57-s − 0.781·59-s + 0.384·61-s − 0.629·63-s − 0.122·67-s − 0.240·69-s + ⋯ |
Λ(s)=(=(600s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(600s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1 |
good | 7 | 1+5T+pT2 |
| 11 | 1+6T+pT2 |
| 13 | 1+3T+pT2 |
| 17 | 1+2T+pT2 |
| 19 | 1−T+pT2 |
| 23 | 1+2T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−3T+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1−4T+pT2 |
| 43 | 1−11T+pT2 |
| 47 | 1+10T+pT2 |
| 53 | 1+8T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1−3T+pT2 |
| 67 | 1+T+pT2 |
| 71 | 1+12T+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1+16T+pT2 |
| 97 | 1+7T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01640260119628208124792470973, −9.573634131463927078112432516263, −8.483378982015133633479563111090, −7.55110806087691558837157186820, −6.72557170085953961720882600963, −5.70500717305478856615746032890, −4.50519787498977221160424199992, −3.11187956794533611218111257703, −2.55892028284702124429993107097, 0,
2.55892028284702124429993107097, 3.11187956794533611218111257703, 4.50519787498977221160424199992, 5.70500717305478856615746032890, 6.72557170085953961720882600963, 7.55110806087691558837157186820, 8.483378982015133633479563111090, 9.573634131463927078112432516263, 10.01640260119628208124792470973