Properties

Label 2-600-1.1-c5-0-13
Degree $2$
Conductor $600$
Sign $1$
Analytic cond. $96.2302$
Root an. cond. $9.80970$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 160·7-s + 81·9-s − 596·11-s + 122·13-s + 1.07e3·17-s + 796·19-s − 1.44e3·21-s + 1.08e3·23-s − 729·27-s + 46·29-s − 4.95e3·31-s + 5.36e3·33-s + 6.11e3·37-s − 1.09e3·39-s − 6·41-s + 2.41e4·43-s − 1.34e4·47-s + 8.79e3·49-s − 9.70e3·51-s − 2.05e4·53-s − 7.16e3·57-s − 4.67e4·59-s − 9.60e3·61-s + 1.29e4·63-s + 1.74e4·67-s − 9.79e3·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.23·7-s + 1/3·9-s − 1.48·11-s + 0.200·13-s + 0.904·17-s + 0.505·19-s − 0.712·21-s + 0.428·23-s − 0.192·27-s + 0.0101·29-s − 0.925·31-s + 0.857·33-s + 0.734·37-s − 0.115·39-s − 0.000557·41-s + 1.98·43-s − 0.890·47-s + 0.523·49-s − 0.522·51-s − 1.00·53-s − 0.292·57-s − 1.74·59-s − 0.330·61-s + 0.411·63-s + 0.473·67-s − 0.247·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(96.2302\)
Root analytic conductor: \(9.80970\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 600,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.889757100\)
\(L(\frac12)\) \(\approx\) \(1.889757100\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p^{2} T \)
5 \( 1 \)
good7 \( 1 - 160 T + p^{5} T^{2} \)
11 \( 1 + 596 T + p^{5} T^{2} \)
13 \( 1 - 122 T + p^{5} T^{2} \)
17 \( 1 - 1078 T + p^{5} T^{2} \)
19 \( 1 - 796 T + p^{5} T^{2} \)
23 \( 1 - 1088 T + p^{5} T^{2} \)
29 \( 1 - 46 T + p^{5} T^{2} \)
31 \( 1 + 4952 T + p^{5} T^{2} \)
37 \( 1 - 6114 T + p^{5} T^{2} \)
41 \( 1 + 6 T + p^{5} T^{2} \)
43 \( 1 - 24116 T + p^{5} T^{2} \)
47 \( 1 + 13480 T + p^{5} T^{2} \)
53 \( 1 + 20598 T + p^{5} T^{2} \)
59 \( 1 + 46756 T + p^{5} T^{2} \)
61 \( 1 + 9602 T + p^{5} T^{2} \)
67 \( 1 - 17404 T + p^{5} T^{2} \)
71 \( 1 - 26568 T + p^{5} T^{2} \)
73 \( 1 + 75450 T + p^{5} T^{2} \)
79 \( 1 - 50472 T + p^{5} T^{2} \)
83 \( 1 + 33236 T + p^{5} T^{2} \)
89 \( 1 - 133194 T + p^{5} T^{2} \)
97 \( 1 - 42878 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08440328236203547300207458633, −9.009726542165932015827347259018, −7.75200736924549397896838519065, −7.61263854758241228592848050033, −6.04627138683383733585836325597, −5.25204493797301607811032300958, −4.59051548108154405697701411926, −3.13908949074049935725557939115, −1.84005812748791400887809234109, −0.70145077181122262909665879081, 0.70145077181122262909665879081, 1.84005812748791400887809234109, 3.13908949074049935725557939115, 4.59051548108154405697701411926, 5.25204493797301607811032300958, 6.04627138683383733585836325597, 7.61263854758241228592848050033, 7.75200736924549397896838519065, 9.009726542165932015827347259018, 10.08440328236203547300207458633

Graph of the $Z$-function along the critical line