L(s) = 1 | + (1.22 + 1.22i)3-s + (0.775 − 0.775i)7-s + 2.99i·9-s + 2.89·11-s + (5.87 + 5.87i)13-s + (4.44 − 4.44i)17-s − 0.101i·19-s + 1.89·21-s + (25.3 + 25.3i)23-s + (−3.67 + 3.67i)27-s + 32.2i·29-s − 3.69·31-s + (3.55 + 3.55i)33-s + (42.6 − 42.6i)37-s + 14.3i·39-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (0.110 − 0.110i)7-s + 0.333i·9-s + 0.263·11-s + (0.452 + 0.452i)13-s + (0.261 − 0.261i)17-s − 0.00531i·19-s + 0.0904·21-s + (1.10 + 1.10i)23-s + (−0.136 + 0.136i)27-s + 1.11i·29-s − 0.119·31-s + (0.107 + 0.107i)33-s + (1.15 − 1.15i)37-s + 0.369i·39-s + ⋯ |
Λ(s)=(=(600s/2ΓC(s)L(s)(0.608−0.793i)Λ(3−s)
Λ(s)=(=(600s/2ΓC(s+1)L(s)(0.608−0.793i)Λ(1−s)
Degree: |
2 |
Conductor: |
600
= 23⋅3⋅52
|
Sign: |
0.608−0.793i
|
Analytic conductor: |
16.3488 |
Root analytic conductor: |
4.04336 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ600(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 600, ( :1), 0.608−0.793i)
|
Particular Values
L(23) |
≈ |
2.153900252 |
L(21) |
≈ |
2.153900252 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.22−1.22i)T |
| 5 | 1 |
good | 7 | 1+(−0.775+0.775i)T−49iT2 |
| 11 | 1−2.89T+121T2 |
| 13 | 1+(−5.87−5.87i)T+169iT2 |
| 17 | 1+(−4.44+4.44i)T−289iT2 |
| 19 | 1+0.101iT−361T2 |
| 23 | 1+(−25.3−25.3i)T+529iT2 |
| 29 | 1−32.2iT−841T2 |
| 31 | 1+3.69T+961T2 |
| 37 | 1+(−42.6+42.6i)T−1.36e3iT2 |
| 41 | 1+12.8T+1.68e3T2 |
| 43 | 1+(−49.2−49.2i)T+1.84e3iT2 |
| 47 | 1+(−2.85+2.85i)T−2.20e3iT2 |
| 53 | 1+(13.1+13.1i)T+2.80e3iT2 |
| 59 | 1−76.3iT−3.48e3T2 |
| 61 | 1+103.T+3.72e3T2 |
| 67 | 1+(−47.6+47.6i)T−4.48e3iT2 |
| 71 | 1−29.7T+5.04e3T2 |
| 73 | 1+(−3.50−3.50i)T+5.32e3iT2 |
| 79 | 1+87.7iT−6.24e3T2 |
| 83 | 1+(−81.7−81.7i)T+6.88e3iT2 |
| 89 | 1−96.5iT−7.92e3T2 |
| 97 | 1+(−54.2+54.2i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72859302123912347981627690782, −9.386271485676022805314637455659, −9.158920161841534376789161208601, −7.934405188335807505961091961328, −7.15608564776996722058021381486, −5.99707032142572137861563293168, −4.92316549027702990729327825434, −3.90695098922698027938242351174, −2.87581195288427901548100638631, −1.33936140956052270359159840803,
0.892343155790627957989094404399, 2.35242428200595951349936936704, 3.48676679721458799471014036754, 4.67721602825181243574222086979, 5.91316601444185776173671017552, 6.74059370702176364455561503320, 7.79816672452001124238935212130, 8.501334482097550432416695330238, 9.348397151508070995894079109513, 10.33263660974649146035057332871