L(s) = 1 | + (1.22 + 1.22i)3-s + (0.775 − 0.775i)7-s + 2.99i·9-s + 2.89·11-s + (5.87 + 5.87i)13-s + (4.44 − 4.44i)17-s − 0.101i·19-s + 1.89·21-s + (25.3 + 25.3i)23-s + (−3.67 + 3.67i)27-s + 32.2i·29-s − 3.69·31-s + (3.55 + 3.55i)33-s + (42.6 − 42.6i)37-s + 14.3i·39-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (0.110 − 0.110i)7-s + 0.333i·9-s + 0.263·11-s + (0.452 + 0.452i)13-s + (0.261 − 0.261i)17-s − 0.00531i·19-s + 0.0904·21-s + (1.10 + 1.10i)23-s + (−0.136 + 0.136i)27-s + 1.11i·29-s − 0.119·31-s + (0.107 + 0.107i)33-s + (1.15 − 1.15i)37-s + 0.369i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.608 - 0.793i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.608 - 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.153900252\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.153900252\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.22 - 1.22i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.775 + 0.775i)T - 49iT^{2} \) |
| 11 | \( 1 - 2.89T + 121T^{2} \) |
| 13 | \( 1 + (-5.87 - 5.87i)T + 169iT^{2} \) |
| 17 | \( 1 + (-4.44 + 4.44i)T - 289iT^{2} \) |
| 19 | \( 1 + 0.101iT - 361T^{2} \) |
| 23 | \( 1 + (-25.3 - 25.3i)T + 529iT^{2} \) |
| 29 | \( 1 - 32.2iT - 841T^{2} \) |
| 31 | \( 1 + 3.69T + 961T^{2} \) |
| 37 | \( 1 + (-42.6 + 42.6i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 12.8T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-49.2 - 49.2i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-2.85 + 2.85i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (13.1 + 13.1i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 76.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 103.T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-47.6 + 47.6i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 29.7T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-3.50 - 3.50i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 87.7iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-81.7 - 81.7i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 96.5iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-54.2 + 54.2i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72859302123912347981627690782, −9.386271485676022805314637455659, −9.158920161841534376789161208601, −7.934405188335807505961091961328, −7.15608564776996722058021381486, −5.99707032142572137861563293168, −4.92316549027702990729327825434, −3.90695098922698027938242351174, −2.87581195288427901548100638631, −1.33936140956052270359159840803,
0.892343155790627957989094404399, 2.35242428200595951349936936704, 3.48676679721458799471014036754, 4.67721602825181243574222086979, 5.91316601444185776173671017552, 6.74059370702176364455561503320, 7.79816672452001124238935212130, 8.501334482097550432416695330238, 9.348397151508070995894079109513, 10.33263660974649146035057332871