L(s) = 1 | − 2-s − 4-s + 5-s + 3·8-s − 3·9-s − 10-s − 2·13-s − 16-s − 6·17-s + 3·18-s + 4·19-s − 20-s + 4·23-s + 25-s + 2·26-s − 6·29-s − 8·31-s − 5·32-s + 6·34-s + 3·36-s − 2·37-s − 4·38-s + 3·40-s − 2·41-s − 4·43-s − 3·45-s − 4·46-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s + 0.447·5-s + 1.06·8-s − 9-s − 0.316·10-s − 0.554·13-s − 1/4·16-s − 1.45·17-s + 0.707·18-s + 0.917·19-s − 0.223·20-s + 0.834·23-s + 1/5·25-s + 0.392·26-s − 1.11·29-s − 1.43·31-s − 0.883·32-s + 1.02·34-s + 1/2·36-s − 0.328·37-s − 0.648·38-s + 0.474·40-s − 0.312·41-s − 0.609·43-s − 0.447·45-s − 0.589·46-s + ⋯ |
Λ(s)=(=(605s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(605s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−T |
| 11 | 1 |
good | 2 | 1+T+pT2 |
| 3 | 1+pT2 |
| 7 | 1+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1+12T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1+16T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1+14T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.02041446476298683486486191886, −9.196982768972178400591968116867, −8.758832935924856173060099057787, −7.71367077872044547263533331174, −6.79405906039010685182823940446, −5.50821445395345299948641768104, −4.77278357968932846404359363084, −3.32452113574721608186627592149, −1.86853886263346253357248352832, 0,
1.86853886263346253357248352832, 3.32452113574721608186627592149, 4.77278357968932846404359363084, 5.50821445395345299948641768104, 6.79405906039010685182823940446, 7.71367077872044547263533331174, 8.758832935924856173060099057787, 9.196982768972178400591968116867, 10.02041446476298683486486191886