Properties

Label 2-608-1.1-c1-0-13
Degree $2$
Conductor $608$
Sign $1$
Analytic cond. $4.85490$
Root an. cond. $2.20338$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.56·3-s + 1.56·5-s + 3·7-s + 3.56·9-s − 3.56·11-s + 2.56·13-s + 4·15-s − 8.12·17-s + 19-s + 7.68·21-s + 1.43·23-s − 2.56·25-s + 1.43·27-s − 7.68·29-s + 0.876·31-s − 9.12·33-s + 4.68·35-s − 1.12·37-s + 6.56·39-s + 4·41-s + 9.56·43-s + 5.56·45-s + 8.68·47-s + 2·49-s − 20.8·51-s − 8.56·53-s − 5.56·55-s + ⋯
L(s)  = 1  + 1.47·3-s + 0.698·5-s + 1.13·7-s + 1.18·9-s − 1.07·11-s + 0.710·13-s + 1.03·15-s − 1.97·17-s + 0.229·19-s + 1.67·21-s + 0.299·23-s − 0.512·25-s + 0.276·27-s − 1.42·29-s + 0.157·31-s − 1.58·33-s + 0.791·35-s − 0.184·37-s + 1.05·39-s + 0.624·41-s + 1.45·43-s + 0.829·45-s + 1.26·47-s + 0.285·49-s − 2.91·51-s − 1.17·53-s − 0.749·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(608\)    =    \(2^{5} \cdot 19\)
Sign: $1$
Analytic conductor: \(4.85490\)
Root analytic conductor: \(2.20338\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 608,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.722046212\)
\(L(\frac12)\) \(\approx\) \(2.722046212\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 2.56T + 3T^{2} \)
5 \( 1 - 1.56T + 5T^{2} \)
7 \( 1 - 3T + 7T^{2} \)
11 \( 1 + 3.56T + 11T^{2} \)
13 \( 1 - 2.56T + 13T^{2} \)
17 \( 1 + 8.12T + 17T^{2} \)
23 \( 1 - 1.43T + 23T^{2} \)
29 \( 1 + 7.68T + 29T^{2} \)
31 \( 1 - 0.876T + 31T^{2} \)
37 \( 1 + 1.12T + 37T^{2} \)
41 \( 1 - 4T + 41T^{2} \)
43 \( 1 - 9.56T + 43T^{2} \)
47 \( 1 - 8.68T + 47T^{2} \)
53 \( 1 + 8.56T + 53T^{2} \)
59 \( 1 + 8.56T + 59T^{2} \)
61 \( 1 + 5.80T + 61T^{2} \)
67 \( 1 + 4.56T + 67T^{2} \)
71 \( 1 - 12.2T + 71T^{2} \)
73 \( 1 - 7.24T + 73T^{2} \)
79 \( 1 - 10T + 79T^{2} \)
83 \( 1 - 7.36T + 83T^{2} \)
89 \( 1 - 9.36T + 89T^{2} \)
97 \( 1 + 1.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.76049969597573691655238784929, −9.392410201670798868356218425549, −8.980582610518813772532807858459, −8.034577044975961632511233168401, −7.49629067270974422852508811169, −6.11417336287529391942224171467, −4.96591759499945842784207650948, −3.91433566893515775066259090814, −2.53346238926307565915139486861, −1.85961794065305034181282345647, 1.85961794065305034181282345647, 2.53346238926307565915139486861, 3.91433566893515775066259090814, 4.96591759499945842784207650948, 6.11417336287529391942224171467, 7.49629067270974422852508811169, 8.034577044975961632511233168401, 8.980582610518813772532807858459, 9.392410201670798868356218425549, 10.76049969597573691655238784929

Graph of the $Z$-function along the critical line