L(s) = 1 | + 2.56·3-s + 1.56·5-s + 3·7-s + 3.56·9-s − 3.56·11-s + 2.56·13-s + 4·15-s − 8.12·17-s + 19-s + 7.68·21-s + 1.43·23-s − 2.56·25-s + 1.43·27-s − 7.68·29-s + 0.876·31-s − 9.12·33-s + 4.68·35-s − 1.12·37-s + 6.56·39-s + 4·41-s + 9.56·43-s + 5.56·45-s + 8.68·47-s + 2·49-s − 20.8·51-s − 8.56·53-s − 5.56·55-s + ⋯ |
L(s) = 1 | + 1.47·3-s + 0.698·5-s + 1.13·7-s + 1.18·9-s − 1.07·11-s + 0.710·13-s + 1.03·15-s − 1.97·17-s + 0.229·19-s + 1.67·21-s + 0.299·23-s − 0.512·25-s + 0.276·27-s − 1.42·29-s + 0.157·31-s − 1.58·33-s + 0.791·35-s − 0.184·37-s + 1.05·39-s + 0.624·41-s + 1.45·43-s + 0.829·45-s + 1.26·47-s + 0.285·49-s − 2.91·51-s − 1.17·53-s − 0.749·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.722046212\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.722046212\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 - 2.56T + 3T^{2} \) |
| 5 | \( 1 - 1.56T + 5T^{2} \) |
| 7 | \( 1 - 3T + 7T^{2} \) |
| 11 | \( 1 + 3.56T + 11T^{2} \) |
| 13 | \( 1 - 2.56T + 13T^{2} \) |
| 17 | \( 1 + 8.12T + 17T^{2} \) |
| 23 | \( 1 - 1.43T + 23T^{2} \) |
| 29 | \( 1 + 7.68T + 29T^{2} \) |
| 31 | \( 1 - 0.876T + 31T^{2} \) |
| 37 | \( 1 + 1.12T + 37T^{2} \) |
| 41 | \( 1 - 4T + 41T^{2} \) |
| 43 | \( 1 - 9.56T + 43T^{2} \) |
| 47 | \( 1 - 8.68T + 47T^{2} \) |
| 53 | \( 1 + 8.56T + 53T^{2} \) |
| 59 | \( 1 + 8.56T + 59T^{2} \) |
| 61 | \( 1 + 5.80T + 61T^{2} \) |
| 67 | \( 1 + 4.56T + 67T^{2} \) |
| 71 | \( 1 - 12.2T + 71T^{2} \) |
| 73 | \( 1 - 7.24T + 73T^{2} \) |
| 79 | \( 1 - 10T + 79T^{2} \) |
| 83 | \( 1 - 7.36T + 83T^{2} \) |
| 89 | \( 1 - 9.36T + 89T^{2} \) |
| 97 | \( 1 + 1.12T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76049969597573691655238784929, −9.392410201670798868356218425549, −8.980582610518813772532807858459, −8.034577044975961632511233168401, −7.49629067270974422852508811169, −6.11417336287529391942224171467, −4.96591759499945842784207650948, −3.91433566893515775066259090814, −2.53346238926307565915139486861, −1.85961794065305034181282345647,
1.85961794065305034181282345647, 2.53346238926307565915139486861, 3.91433566893515775066259090814, 4.96591759499945842784207650948, 6.11417336287529391942224171467, 7.49629067270974422852508811169, 8.034577044975961632511233168401, 8.980582610518813772532807858459, 9.392410201670798868356218425549, 10.76049969597573691655238784929