L(s) = 1 | + 2.56·3-s + 1.56·5-s + 3·7-s + 3.56·9-s − 3.56·11-s + 2.56·13-s + 4·15-s − 8.12·17-s + 19-s + 7.68·21-s + 1.43·23-s − 2.56·25-s + 1.43·27-s − 7.68·29-s + 0.876·31-s − 9.12·33-s + 4.68·35-s − 1.12·37-s + 6.56·39-s + 4·41-s + 9.56·43-s + 5.56·45-s + 8.68·47-s + 2·49-s − 20.8·51-s − 8.56·53-s − 5.56·55-s + ⋯ |
L(s) = 1 | + 1.47·3-s + 0.698·5-s + 1.13·7-s + 1.18·9-s − 1.07·11-s + 0.710·13-s + 1.03·15-s − 1.97·17-s + 0.229·19-s + 1.67·21-s + 0.299·23-s − 0.512·25-s + 0.276·27-s − 1.42·29-s + 0.157·31-s − 1.58·33-s + 0.791·35-s − 0.184·37-s + 1.05·39-s + 0.624·41-s + 1.45·43-s + 0.829·45-s + 1.26·47-s + 0.285·49-s − 2.91·51-s − 1.17·53-s − 0.749·55-s + ⋯ |
Λ(s)=(=(608s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(608s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.722046212 |
L(21) |
≈ |
2.722046212 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1−T |
good | 3 | 1−2.56T+3T2 |
| 5 | 1−1.56T+5T2 |
| 7 | 1−3T+7T2 |
| 11 | 1+3.56T+11T2 |
| 13 | 1−2.56T+13T2 |
| 17 | 1+8.12T+17T2 |
| 23 | 1−1.43T+23T2 |
| 29 | 1+7.68T+29T2 |
| 31 | 1−0.876T+31T2 |
| 37 | 1+1.12T+37T2 |
| 41 | 1−4T+41T2 |
| 43 | 1−9.56T+43T2 |
| 47 | 1−8.68T+47T2 |
| 53 | 1+8.56T+53T2 |
| 59 | 1+8.56T+59T2 |
| 61 | 1+5.80T+61T2 |
| 67 | 1+4.56T+67T2 |
| 71 | 1−12.2T+71T2 |
| 73 | 1−7.24T+73T2 |
| 79 | 1−10T+79T2 |
| 83 | 1−7.36T+83T2 |
| 89 | 1−9.36T+89T2 |
| 97 | 1+1.12T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.76049969597573691655238784929, −9.392410201670798868356218425549, −8.980582610518813772532807858459, −8.034577044975961632511233168401, −7.49629067270974422852508811169, −6.11417336287529391942224171467, −4.96591759499945842784207650948, −3.91433566893515775066259090814, −2.53346238926307565915139486861, −1.85961794065305034181282345647,
1.85961794065305034181282345647, 2.53346238926307565915139486861, 3.91433566893515775066259090814, 4.96591759499945842784207650948, 6.11417336287529391942224171467, 7.49629067270974422852508811169, 8.034577044975961632511233168401, 8.980582610518813772532807858459, 9.392410201670798868356218425549, 10.76049969597573691655238784929