Properties

Label 2-60840-1.1-c1-0-33
Degree $2$
Conductor $60840$
Sign $1$
Analytic cond. $485.809$
Root an. cond. $22.0410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 6·11-s + 2·17-s − 2·19-s + 6·23-s + 25-s + 6·29-s + 8·31-s − 10·37-s + 4·41-s + 8·47-s − 7·49-s + 4·53-s + 6·55-s − 10·59-s + 10·61-s − 8·67-s + 4·71-s − 2·73-s + 16·79-s + 2·85-s − 2·95-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.80·11-s + 0.485·17-s − 0.458·19-s + 1.25·23-s + 1/5·25-s + 1.11·29-s + 1.43·31-s − 1.64·37-s + 0.624·41-s + 1.16·47-s − 49-s + 0.549·53-s + 0.809·55-s − 1.30·59-s + 1.28·61-s − 0.977·67-s + 0.474·71-s − 0.234·73-s + 1.80·79-s + 0.216·85-s − 0.205·95-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(60840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(485.809\)
Root analytic conductor: \(22.0410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 60840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.928409950\)
\(L(\frac12)\) \(\approx\) \(3.928409950\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.29339437370987, −13.71599525100302, −13.55989444940581, −12.63657846483549, −12.20143569792429, −11.94682620016307, −11.24782630463265, −10.68885868327080, −10.27001364086844, −9.484586141076773, −9.330666668010182, −8.534875643138117, −8.363334643961922, −7.369509685458457, −6.867280671343378, −6.450046501849809, −5.982928132453553, −5.218401660012913, −4.644039761377877, −4.095850070272240, −3.386891995082693, −2.837273536640425, −1.996732602711521, −1.258627211488363, −0.7610565762242350, 0.7610565762242350, 1.258627211488363, 1.996732602711521, 2.837273536640425, 3.386891995082693, 4.095850070272240, 4.644039761377877, 5.218401660012913, 5.982928132453553, 6.450046501849809, 6.867280671343378, 7.369509685458457, 8.363334643961922, 8.534875643138117, 9.330666668010182, 9.484586141076773, 10.27001364086844, 10.68885868327080, 11.24782630463265, 11.94682620016307, 12.20143569792429, 12.63657846483549, 13.55989444940581, 13.71599525100302, 14.29339437370987

Graph of the $Z$-function along the critical line