Properties

Label 2-60840-1.1-c1-0-4
Degree $2$
Conductor $60840$
Sign $1$
Analytic cond. $485.809$
Root an. cond. $22.0410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s − 4·11-s + 8·17-s + 2·19-s + 4·23-s + 25-s − 8·29-s − 10·31-s + 2·35-s − 6·37-s − 6·41-s − 8·43-s + 8·47-s − 3·49-s − 12·53-s + 4·55-s + 4·59-s + 10·61-s − 2·67-s − 6·73-s + 8·77-s + 12·79-s + 4·83-s − 8·85-s + 6·89-s − 2·95-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s − 1.20·11-s + 1.94·17-s + 0.458·19-s + 0.834·23-s + 1/5·25-s − 1.48·29-s − 1.79·31-s + 0.338·35-s − 0.986·37-s − 0.937·41-s − 1.21·43-s + 1.16·47-s − 3/7·49-s − 1.64·53-s + 0.539·55-s + 0.520·59-s + 1.28·61-s − 0.244·67-s − 0.702·73-s + 0.911·77-s + 1.35·79-s + 0.439·83-s − 0.867·85-s + 0.635·89-s − 0.205·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(60840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(485.809\)
Root analytic conductor: \(22.0410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 60840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7803137523\)
\(L(\frac12)\) \(\approx\) \(0.7803137523\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.38083691831185, −13.74598796079006, −13.08531584788219, −12.88506750881231, −12.34959733066861, −11.82242275428402, −11.23698840688485, −10.69327177858312, −10.22491091825306, −9.710995064937718, −9.241403229592174, −8.616207558172191, −7.923702419564040, −7.542310860384827, −7.138871381098519, −6.468097766995289, −5.606251857101731, −5.336416722979387, −4.891550262475783, −3.682916351930839, −3.493593527000839, −2.998721373616594, −2.081280250045705, −1.310188927303040, −0.3070367252841509, 0.3070367252841509, 1.310188927303040, 2.081280250045705, 2.998721373616594, 3.493593527000839, 3.682916351930839, 4.891550262475783, 5.336416722979387, 5.606251857101731, 6.468097766995289, 7.138871381098519, 7.542310860384827, 7.923702419564040, 8.616207558172191, 9.241403229592174, 9.710995064937718, 10.22491091825306, 10.69327177858312, 11.23698840688485, 11.82242275428402, 12.34959733066861, 12.88506750881231, 13.08531584788219, 13.74598796079006, 14.38083691831185

Graph of the $Z$-function along the critical line