Properties

Label 2-60840-1.1-c1-0-41
Degree $2$
Conductor $60840$
Sign $-1$
Analytic cond. $485.809$
Root an. cond. $22.0410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 6·17-s − 4·19-s + 25-s + 2·29-s + 2·37-s − 2·41-s − 4·43-s + 4·47-s − 7·49-s + 10·53-s + 8·59-s − 2·61-s + 4·67-s − 12·71-s + 6·73-s − 16·83-s − 6·85-s − 10·89-s + 4·95-s − 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.45·17-s − 0.917·19-s + 1/5·25-s + 0.371·29-s + 0.328·37-s − 0.312·41-s − 0.609·43-s + 0.583·47-s − 49-s + 1.37·53-s + 1.04·59-s − 0.256·61-s + 0.488·67-s − 1.42·71-s + 0.702·73-s − 1.75·83-s − 0.650·85-s − 1.05·89-s + 0.410·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(60840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(485.809\)
Root analytic conductor: \(22.0410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 60840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.62653301522286, −14.13069571574099, −13.51851560717663, −12.98600004425497, −12.48868052295855, −12.05276296482323, −11.54044367732055, −11.06968900957357, −10.36315149274344, −10.05362229402391, −9.513388448904866, −8.695224999738117, −8.414237516919908, −7.828819709240526, −7.276443369981650, −6.754477748442332, −6.121691110719434, −5.515535215177466, −5.014961039267487, −4.237643016474681, −3.822313632434255, −3.093905360495723, −2.536049927611069, −1.636274357960329, −0.9318376170380364, 0, 0.9318376170380364, 1.636274357960329, 2.536049927611069, 3.093905360495723, 3.822313632434255, 4.237643016474681, 5.014961039267487, 5.515535215177466, 6.121691110719434, 6.754477748442332, 7.276443369981650, 7.828819709240526, 8.414237516919908, 8.695224999738117, 9.513388448904866, 10.05362229402391, 10.36315149274344, 11.06968900957357, 11.54044367732055, 12.05276296482323, 12.48868052295855, 12.98600004425497, 13.51851560717663, 14.13069571574099, 14.62653301522286

Graph of the $Z$-function along the critical line