Properties

Label 2-60840-1.1-c1-0-51
Degree $2$
Conductor $60840$
Sign $1$
Analytic cond. $485.809$
Root an. cond. $22.0410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·7-s − 5·11-s − 5·17-s − 19-s + 23-s + 25-s + 9·29-s − 4·31-s + 3·35-s − 3·37-s + 41-s − 3·43-s + 8·47-s + 2·49-s − 10·53-s + 5·55-s − 3·59-s + 7·61-s − 9·67-s − 7·71-s + 10·73-s + 15·77-s − 16·79-s − 12·83-s + 5·85-s − 15·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.13·7-s − 1.50·11-s − 1.21·17-s − 0.229·19-s + 0.208·23-s + 1/5·25-s + 1.67·29-s − 0.718·31-s + 0.507·35-s − 0.493·37-s + 0.156·41-s − 0.457·43-s + 1.16·47-s + 2/7·49-s − 1.37·53-s + 0.674·55-s − 0.390·59-s + 0.896·61-s − 1.09·67-s − 0.830·71-s + 1.17·73-s + 1.70·77-s − 1.80·79-s − 1.31·83-s + 0.542·85-s − 1.58·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(60840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(485.809\)
Root analytic conductor: \(22.0410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 60840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 - T + p T^{2} \)
43 \( 1 + 3 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 + 9 T + p T^{2} \)
71 \( 1 + 7 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 15 T + p T^{2} \)
97 \( 1 + 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.98016483221341, −14.14193356468691, −13.78241848931467, −13.14023748375960, −12.77021653639910, −12.52294323955306, −11.76804995389109, −11.18147278613258, −10.70594833620145, −10.21966394324413, −9.832004316487263, −9.049653734191630, −8.652059512236523, −8.130249384770013, −7.459464265414493, −6.981634699499793, −6.469889939620209, −5.896755430220122, −5.224816670213413, −4.631150243027681, −4.103121638654220, −3.286744731211173, −2.793668861061841, −2.326048047574123, −1.259976587528407, 0, 0, 1.259976587528407, 2.326048047574123, 2.793668861061841, 3.286744731211173, 4.103121638654220, 4.631150243027681, 5.224816670213413, 5.896755430220122, 6.469889939620209, 6.981634699499793, 7.459464265414493, 8.130249384770013, 8.652059512236523, 9.049653734191630, 9.832004316487263, 10.21966394324413, 10.70594833620145, 11.18147278613258, 11.76804995389109, 12.52294323955306, 12.77021653639910, 13.14023748375960, 13.78241848931467, 14.14193356468691, 14.98016483221341

Graph of the $Z$-function along the critical line