L(s) = 1 | + i·7-s − 1.41i·11-s − i·13-s + 1.41·17-s + 19-s − 1.41·23-s − 1.41i·29-s − 31-s + i·43-s + 1.41·47-s − 1.41i·59-s + 61-s + i·67-s + 1.41·77-s + 1.41·83-s + ⋯ |
L(s) = 1 | + i·7-s − 1.41i·11-s − i·13-s + 1.41·17-s + 19-s − 1.41·23-s − 1.41i·29-s − 31-s + i·43-s + 1.41·47-s − 1.41i·59-s + 61-s + i·67-s + 1.41·77-s + 1.41·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 + 0.472i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 + 0.472i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.296424832\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.296424832\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - iT - T^{2} \) |
| 11 | \( 1 + 1.41iT - T^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 17 | \( 1 - 1.41T + T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + 1.41T + T^{2} \) |
| 29 | \( 1 + 1.41iT - T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - iT - T^{2} \) |
| 47 | \( 1 - 1.41T + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + 1.41iT - T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 - iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - 1.41T + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.491319359496130998365278313813, −8.048926040971543152693827590152, −7.41506294075812564212143112229, −6.01053893254590270805515487532, −5.82436061450194777945724221266, −5.17938271585647593745218092500, −3.80522900517092784242027873356, −3.17960553631215887323214806857, −2.30011315684561916291634291834, −0.870213741523515113660782116175,
1.26325894676897359106920697946, 2.17041713219627770168738164403, 3.54246297667616742686760450820, 4.06676293688038397551329429009, 4.97557605076942760042474953897, 5.71893088329926182108478285573, 6.81990408756708762658555072224, 7.36749747949099579525022890121, 7.73590712605350375653661837162, 8.925234705519217595961433380630