L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)8-s − 1.00·16-s + 1.41·17-s + (−1 − i)19-s + 1.41·23-s − 2i·31-s + (−0.707 + 0.707i)32-s + (1.00 − 1.00i)34-s − 1.41·38-s + (1.00 − 1.00i)46-s − 1.41i·47-s − 49-s + (−1 + i)61-s + (−1.41 − 1.41i)62-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)8-s − 1.00·16-s + 1.41·17-s + (−1 − i)19-s + 1.41·23-s − 2i·31-s + (−0.707 + 0.707i)32-s + (1.00 − 1.00i)34-s − 1.41·38-s + (1.00 − 1.00i)46-s − 1.41i·47-s − 49-s + (−1 + i)61-s + (−1.41 − 1.41i)62-s + ⋯ |
Λ(s)=(=(3600s/2ΓC(s)L(s)(−0.382+0.923i)Λ(1−s)
Λ(s)=(=(3600s/2ΓC(s)L(s)(−0.382+0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
3600
= 24⋅32⋅52
|
Sign: |
−0.382+0.923i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3600(2251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3600, ( :0), −0.382+0.923i)
|
Particular Values
L(21) |
≈ |
1.788782711 |
L(21) |
≈ |
1.788782711 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707+0.707i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+T2 |
| 11 | 1−iT2 |
| 13 | 1−iT2 |
| 17 | 1−1.41T+T2 |
| 19 | 1+(1+i)T+iT2 |
| 23 | 1−1.41T+T2 |
| 29 | 1−iT2 |
| 31 | 1+2iT−T2 |
| 37 | 1+iT2 |
| 41 | 1−T2 |
| 43 | 1−iT2 |
| 47 | 1+1.41iT−T2 |
| 53 | 1+iT2 |
| 59 | 1−iT2 |
| 61 | 1+(1−i)T−iT2 |
| 67 | 1+iT2 |
| 71 | 1+T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1+(−1.41−1.41i)T+iT2 |
| 89 | 1−T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.677544458126776470747749793296, −7.69219125961290442065247765548, −6.86213226580840202940040756303, −6.10727422809373159310536179858, −5.33182694746686031333768168516, −4.64682768377721411346024987088, −3.78500489946826328544568450396, −2.96059460854360747427595305849, −2.11342649451809806666003523781, −0.864490264831248719013907376912,
1.56873612633801131118794968377, 2.98954593424674399346939061585, 3.49023799246816021736920406591, 4.57505655808519907944404620231, 5.17550548795675326349954246620, 6.00477529917657942880727165907, 6.63365072542530337417233310140, 7.44391627976619309053602629073, 8.064195037630132165942152590804, 8.739548244820448964306553226188