L(s) = 1 | + 7-s − 1.41i·11-s + 13-s − 1.41i·17-s − 19-s − 1.41i·23-s + 1.41i·29-s − 31-s − 43-s − 1.41i·47-s + 1.41i·59-s + 61-s + 67-s − 1.41i·77-s + 1.41i·83-s + ⋯ |
L(s) = 1 | + 7-s − 1.41i·11-s + 13-s − 1.41i·17-s − 19-s − 1.41i·23-s + 1.41i·29-s − 31-s − 43-s − 1.41i·47-s + 1.41i·59-s + 61-s + 67-s − 1.41i·77-s + 1.41i·83-s + ⋯ |
Λ(s)=(=(3600s/2ΓC(s)L(s)(0.577+0.816i)Λ(1−s)
Λ(s)=(=(3600s/2ΓC(s)L(s)(0.577+0.816i)Λ(1−s)
Degree: |
2 |
Conductor: |
3600
= 24⋅32⋅52
|
Sign: |
0.577+0.816i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3600(1601,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3600, ( :0), 0.577+0.816i)
|
Particular Values
L(21) |
≈ |
1.400968745 |
L(21) |
≈ |
1.400968745 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−T+T2 |
| 11 | 1+1.41iT−T2 |
| 13 | 1−T+T2 |
| 17 | 1+1.41iT−T2 |
| 19 | 1+T+T2 |
| 23 | 1+1.41iT−T2 |
| 29 | 1−1.41iT−T2 |
| 31 | 1+T+T2 |
| 37 | 1+T2 |
| 41 | 1−T2 |
| 43 | 1+T+T2 |
| 47 | 1+1.41iT−T2 |
| 53 | 1−T2 |
| 59 | 1−1.41iT−T2 |
| 61 | 1−T+T2 |
| 67 | 1−T+T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1+T2 |
| 83 | 1−1.41iT−T2 |
| 89 | 1−T2 |
| 97 | 1−T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.638500256103326820405106902297, −8.112920924487967028762584241507, −7.06957455539179760687525647156, −6.44428374035513674183502844617, −5.50673453653664649039742821198, −4.93607296628208658586609165469, −3.94764311166269882958010416617, −3.12468352684651830307925912594, −2.06006397745463030029900780347, −0.854814433917733532252852419903,
1.61245723757089528019772218303, 2.02664624170740135540600264529, 3.58369756359856413017064034223, 4.22718171592799916570217338214, 4.98561557376672697548185602270, 5.90005240869906844789575128064, 6.56126826123472603347650751197, 7.55525502599468323412494881251, 8.055589366567735307324079009058, 8.710564308136195994525248405738