L(s) = 1 | − 5-s − 5·11-s − 5·13-s − 17-s + 19-s + 3·23-s − 4·25-s − 2·29-s + 2·31-s − 8·37-s + 5·41-s − 9·43-s − 6·47-s − 7·49-s + 6·53-s + 5·55-s − 6·59-s − 4·61-s + 5·65-s + 12·67-s + 12·71-s − 2·73-s + 10·79-s + 2·83-s + 85-s − 12·89-s − 95-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 1.50·11-s − 1.38·13-s − 0.242·17-s + 0.229·19-s + 0.625·23-s − 4/5·25-s − 0.371·29-s + 0.359·31-s − 1.31·37-s + 0.780·41-s − 1.37·43-s − 0.875·47-s − 49-s + 0.824·53-s + 0.674·55-s − 0.781·59-s − 0.512·61-s + 0.620·65-s + 1.46·67-s + 1.42·71-s − 0.234·73-s + 1.12·79-s + 0.219·83-s + 0.108·85-s − 1.27·89-s − 0.102·95-s + ⋯ |
Λ(s)=(=(612s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(612s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 17 | 1+T |
good | 5 | 1+T+pT2 |
| 7 | 1+pT2 |
| 11 | 1+5T+pT2 |
| 13 | 1+5T+pT2 |
| 19 | 1−T+pT2 |
| 23 | 1−3T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1−2T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1−5T+pT2 |
| 43 | 1+9T+pT2 |
| 47 | 1+6T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1+4T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1−12T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1−10T+pT2 |
| 83 | 1−2T+pT2 |
| 89 | 1+12T+pT2 |
| 97 | 1−16T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18490963672513276838211915410, −9.469029240875226710024119915125, −8.242710873880411872797331552948, −7.63736087168536861434605466701, −6.76959891375384935472749260030, −5.37641192809255730852979399474, −4.75477574120717256848740322395, −3.34157120180978815093157505643, −2.23127545325450121489119586078, 0,
2.23127545325450121489119586078, 3.34157120180978815093157505643, 4.75477574120717256848740322395, 5.37641192809255730852979399474, 6.76959891375384935472749260030, 7.63736087168536861434605466701, 8.242710873880411872797331552948, 9.469029240875226710024119915125, 10.18490963672513276838211915410