Properties

Label 2-612-1.1-c1-0-5
Degree $2$
Conductor $612$
Sign $-1$
Analytic cond. $4.88684$
Root an. cond. $2.21062$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 5·11-s − 5·13-s − 17-s + 19-s + 3·23-s − 4·25-s − 2·29-s + 2·31-s − 8·37-s + 5·41-s − 9·43-s − 6·47-s − 7·49-s + 6·53-s + 5·55-s − 6·59-s − 4·61-s + 5·65-s + 12·67-s + 12·71-s − 2·73-s + 10·79-s + 2·83-s + 85-s − 12·89-s − 95-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.50·11-s − 1.38·13-s − 0.242·17-s + 0.229·19-s + 0.625·23-s − 4/5·25-s − 0.371·29-s + 0.359·31-s − 1.31·37-s + 0.780·41-s − 1.37·43-s − 0.875·47-s − 49-s + 0.824·53-s + 0.674·55-s − 0.781·59-s − 0.512·61-s + 0.620·65-s + 1.46·67-s + 1.42·71-s − 0.234·73-s + 1.12·79-s + 0.219·83-s + 0.108·85-s − 1.27·89-s − 0.102·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 612 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 612 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(612\)    =    \(2^{2} \cdot 3^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(4.88684\)
Root analytic conductor: \(2.21062\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 612,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 + 9 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 - 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18490963672513276838211915410, −9.469029240875226710024119915125, −8.242710873880411872797331552948, −7.63736087168536861434605466701, −6.76959891375384935472749260030, −5.37641192809255730852979399474, −4.75477574120717256848740322395, −3.34157120180978815093157505643, −2.23127545325450121489119586078, 0, 2.23127545325450121489119586078, 3.34157120180978815093157505643, 4.75477574120717256848740322395, 5.37641192809255730852979399474, 6.76959891375384935472749260030, 7.63736087168536861434605466701, 8.242710873880411872797331552948, 9.469029240875226710024119915125, 10.18490963672513276838211915410

Graph of the $Z$-function along the critical line