Properties

Label 2-616-1.1-c1-0-12
Degree $2$
Conductor $616$
Sign $-1$
Analytic cond. $4.91878$
Root an. cond. $2.21783$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 3·9-s − 11-s − 6·13-s − 2·19-s + 4·23-s − 5·25-s − 2·29-s + 2·31-s + 2·37-s − 8·41-s − 2·47-s + 49-s − 10·53-s − 4·59-s + 10·61-s + 3·63-s + 4·67-s − 8·73-s + 77-s + 8·79-s + 9·81-s − 2·83-s − 6·89-s + 6·91-s + 2·97-s + 3·99-s + ⋯
L(s)  = 1  − 0.377·7-s − 9-s − 0.301·11-s − 1.66·13-s − 0.458·19-s + 0.834·23-s − 25-s − 0.371·29-s + 0.359·31-s + 0.328·37-s − 1.24·41-s − 0.291·47-s + 1/7·49-s − 1.37·53-s − 0.520·59-s + 1.28·61-s + 0.377·63-s + 0.488·67-s − 0.936·73-s + 0.113·77-s + 0.900·79-s + 81-s − 0.219·83-s − 0.635·89-s + 0.628·91-s + 0.203·97-s + 0.301·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(616\)    =    \(2^{3} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(4.91878\)
Root analytic conductor: \(2.21783\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
11 \( 1 + T \)
good3 \( 1 + p T^{2} \)
5 \( 1 + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 2 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07995037027806350781622361938, −9.427364167513449399975184048294, −8.427472592413009369442981171559, −7.56186589309529403797122372766, −6.60336419837693223802202901848, −5.55808150974400203762583292939, −4.69735623090568767734453095829, −3.26677825137831447402592197381, −2.27748515390590495115985369379, 0, 2.27748515390590495115985369379, 3.26677825137831447402592197381, 4.69735623090568767734453095829, 5.55808150974400203762583292939, 6.60336419837693223802202901848, 7.56186589309529403797122372766, 8.427472592413009369442981171559, 9.427364167513449399975184048294, 10.07995037027806350781622361938

Graph of the $Z$-function along the critical line