Properties

Label 2-616-1.1-c1-0-13
Degree $2$
Conductor $616$
Sign $-1$
Analytic cond. $4.91878$
Root an. cond. $2.21783$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.56·3-s − 3.56·5-s − 7-s − 0.561·9-s + 11-s − 5.12·13-s − 5.56·15-s − 2·17-s + 3.12·19-s − 1.56·21-s − 5.56·23-s + 7.68·25-s − 5.56·27-s − 2·29-s − 6.43·31-s + 1.56·33-s + 3.56·35-s + 0.438·37-s − 8·39-s − 10·41-s + 4·43-s + 2·45-s + 10.2·47-s + 49-s − 3.12·51-s + 12.2·53-s − 3.56·55-s + ⋯
L(s)  = 1  + 0.901·3-s − 1.59·5-s − 0.377·7-s − 0.187·9-s + 0.301·11-s − 1.42·13-s − 1.43·15-s − 0.485·17-s + 0.716·19-s − 0.340·21-s − 1.15·23-s + 1.53·25-s − 1.07·27-s − 0.371·29-s − 1.15·31-s + 0.271·33-s + 0.602·35-s + 0.0720·37-s − 1.28·39-s − 1.56·41-s + 0.609·43-s + 0.298·45-s + 1.49·47-s + 0.142·49-s − 0.437·51-s + 1.68·53-s − 0.480·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(616\)    =    \(2^{3} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(4.91878\)
Root analytic conductor: \(2.21783\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
11 \( 1 - T \)
good3 \( 1 - 1.56T + 3T^{2} \)
5 \( 1 + 3.56T + 5T^{2} \)
13 \( 1 + 5.12T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 - 3.12T + 19T^{2} \)
23 \( 1 + 5.56T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 + 6.43T + 31T^{2} \)
37 \( 1 - 0.438T + 37T^{2} \)
41 \( 1 + 10T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 10.2T + 47T^{2} \)
53 \( 1 - 12.2T + 53T^{2} \)
59 \( 1 + 9.56T + 59T^{2} \)
61 \( 1 - 12.2T + 61T^{2} \)
67 \( 1 - 1.56T + 67T^{2} \)
71 \( 1 + 8.68T + 71T^{2} \)
73 \( 1 - 12.2T + 73T^{2} \)
79 \( 1 + 3.12T + 79T^{2} \)
83 \( 1 + 8T + 83T^{2} \)
89 \( 1 + 8.43T + 89T^{2} \)
97 \( 1 - 4.43T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.04900861894279974697769488082, −9.165298715982995101076461140387, −8.398420384640503098321040322054, −7.56165567820588145269391053470, −7.05477591295110836533108705515, −5.49624383309977074006990886382, −4.19955819997859575338975976910, −3.49576616605916737303806191153, −2.39887700497965227885451748768, 0, 2.39887700497965227885451748768, 3.49576616605916737303806191153, 4.19955819997859575338975976910, 5.49624383309977074006990886382, 7.05477591295110836533108705515, 7.56165567820588145269391053470, 8.398420384640503098321040322054, 9.165298715982995101076461140387, 10.04900861894279974697769488082

Graph of the $Z$-function along the critical line