L(s) = 1 | + 2.68·3-s + 2.68·5-s + 7-s + 4.18·9-s + 11-s − 2.50·13-s + 7.18·15-s − 6.37·17-s − 3.87·19-s + 2.68·21-s − 4.55·23-s + 2.18·25-s + 3.18·27-s + 3.01·29-s + 5.18·31-s + 2.68·33-s + 2.68·35-s − 6.55·37-s − 6.72·39-s − 4.34·41-s − 1.01·43-s + 11.2·45-s + 0.637·47-s + 49-s − 17.1·51-s − 3.01·53-s + 2.68·55-s + ⋯ |
L(s) = 1 | + 1.54·3-s + 1.19·5-s + 0.377·7-s + 1.39·9-s + 0.301·11-s − 0.695·13-s + 1.85·15-s − 1.54·17-s − 0.888·19-s + 0.585·21-s − 0.949·23-s + 0.437·25-s + 0.613·27-s + 0.560·29-s + 0.932·31-s + 0.466·33-s + 0.453·35-s − 1.07·37-s − 1.07·39-s − 0.678·41-s − 0.155·43-s + 1.67·45-s + 0.0929·47-s + 0.142·49-s − 2.39·51-s − 0.414·53-s + 0.361·55-s + ⋯ |
Λ(s)=(=(616s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(616s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.841356521 |
L(21) |
≈ |
2.841356521 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−T |
| 11 | 1−T |
good | 3 | 1−2.68T+3T2 |
| 5 | 1−2.68T+5T2 |
| 13 | 1+2.50T+13T2 |
| 17 | 1+6.37T+17T2 |
| 19 | 1+3.87T+19T2 |
| 23 | 1+4.55T+23T2 |
| 29 | 1−3.01T+29T2 |
| 31 | 1−5.18T+31T2 |
| 37 | 1+6.55T+37T2 |
| 41 | 1+4.34T+41T2 |
| 43 | 1+1.01T+43T2 |
| 47 | 1−0.637T+47T2 |
| 53 | 1+3.01T+53T2 |
| 59 | 1−12.0T+59T2 |
| 61 | 1−15.6T+61T2 |
| 67 | 1−5.56T+67T2 |
| 71 | 1−11.5T+71T2 |
| 73 | 1+13.3T+73T2 |
| 79 | 1−6.37T+79T2 |
| 83 | 1−2.50T+83T2 |
| 89 | 1+12.9T+89T2 |
| 97 | 1+10.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.17200699564353002570535707285, −9.767410128491079068465780218256, −8.698592453568943557245085899711, −8.404078271664583362594909700066, −7.11304303166610787336314853109, −6.28821758971901757156237277195, −4.92633633218914971899591074776, −3.88883278231138769830239128868, −2.43611974768842675042505582867, −1.96478652796702649110347377046,
1.96478652796702649110347377046, 2.43611974768842675042505582867, 3.88883278231138769830239128868, 4.92633633218914971899591074776, 6.28821758971901757156237277195, 7.11304303166610787336314853109, 8.404078271664583362594909700066, 8.698592453568943557245085899711, 9.767410128491079068465780218256, 10.17200699564353002570535707285