L(s) = 1 | + (−0.5 − 1.53i)3-s + (−2.45 − 1.78i)5-s + (0.309 − 0.951i)7-s + (0.309 − 0.224i)9-s + (−3.31 + 0.141i)11-s + (−1.54 + 1.11i)13-s + (−1.51 + 4.66i)15-s + (−3.90 − 2.83i)17-s + (2.08 + 6.40i)19-s − 1.61·21-s + 7.99·23-s + (1.29 + 4.00i)25-s + (−4.42 − 3.21i)27-s + (0.254 − 0.782i)29-s + (−7.96 + 5.78i)31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.888i)3-s + (−1.09 − 0.797i)5-s + (0.116 − 0.359i)7-s + (0.103 − 0.0748i)9-s + (−0.999 + 0.0425i)11-s + (−0.427 + 0.310i)13-s + (−0.391 + 1.20i)15-s + (−0.947 − 0.688i)17-s + (0.477 + 1.46i)19-s − 0.353·21-s + 1.66·23-s + (0.259 + 0.800i)25-s + (−0.851 − 0.619i)27-s + (0.0472 − 0.145i)29-s + (−1.43 + 1.03i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.819 - 0.572i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.819 - 0.572i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.105011 + 0.333823i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.105011 + 0.333823i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (3.31 - 0.141i)T \) |
good | 3 | \( 1 + (0.5 + 1.53i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (2.45 + 1.78i)T + (1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (1.54 - 1.11i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (3.90 + 2.83i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.08 - 6.40i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 7.99T + 23T^{2} \) |
| 29 | \( 1 + (-0.254 + 0.782i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (7.96 - 5.78i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.70 - 5.25i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (2.83 + 8.72i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 11.1T + 43T^{2} \) |
| 47 | \( 1 + (-1.79 - 5.51i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-5.95 + 4.32i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.565 - 1.74i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (7.77 + 5.64i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 2.23T + 67T^{2} \) |
| 71 | \( 1 + (-3.31 - 2.40i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-3.78 + 11.6i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (0.0773 - 0.0562i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (11.1 + 8.08i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 12.6T + 89T^{2} \) |
| 97 | \( 1 + (-11.8 + 8.63i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20197644753609844102452471360, −9.046373855212558988765623560517, −8.173631150258138887922878972315, −7.36559436662237646304753240294, −6.87187680137816115014622539580, −5.36853130571650135624872196246, −4.58773279446453017572606664801, −3.37094004506957232896216644328, −1.62597250112864602654819761538, −0.19810957655693543483133562654,
2.57474308921371351057231808933, 3.60799160708345667537759345483, 4.70565197717388844269929775653, 5.38348133446850940149213814908, 6.92043106421553605727541914203, 7.49435715947428966604313662013, 8.570140993762497584395396906895, 9.505676638317444792803837981019, 10.55065080998886066051409805927, 11.06461446968718422887470221001