L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + (−0.809 − 0.587i)7-s + (0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + (−0.309 − 0.951i)11-s + (−0.309 + 0.951i)14-s + (0.309 − 0.951i)16-s − 0.999·18-s + (−0.809 + 0.587i)22-s − 1.17i·23-s + (0.809 − 0.587i)25-s + 0.999·28-s + (−0.5 − 0.363i)29-s − 32-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + (−0.809 − 0.587i)7-s + (0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + (−0.309 − 0.951i)11-s + (−0.309 + 0.951i)14-s + (0.309 − 0.951i)16-s − 0.999·18-s + (−0.809 + 0.587i)22-s − 1.17i·23-s + (0.809 − 0.587i)25-s + 0.999·28-s + (−0.5 − 0.363i)29-s − 32-s + ⋯ |
Λ(s)=(=(616s/2ΓC(s)L(s)(−0.605+0.795i)Λ(1−s)
Λ(s)=(=(616s/2ΓC(s)L(s)(−0.605+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
616
= 23⋅7⋅11
|
Sign: |
−0.605+0.795i
|
Analytic conductor: |
0.307424 |
Root analytic conductor: |
0.554458 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ616(475,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 616, ( :0), −0.605+0.795i)
|
Particular Values
L(21) |
≈ |
0.6336524757 |
L(21) |
≈ |
0.6336524757 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.309+0.951i)T |
| 7 | 1+(0.809+0.587i)T |
| 11 | 1+(0.309+0.951i)T |
good | 3 | 1+(−0.309+0.951i)T2 |
| 5 | 1+(−0.809+0.587i)T2 |
| 13 | 1+(0.809+0.587i)T2 |
| 17 | 1+(−0.809+0.587i)T2 |
| 19 | 1+(0.309−0.951i)T2 |
| 23 | 1+1.17iT−T2 |
| 29 | 1+(0.5+0.363i)T+(0.309+0.951i)T2 |
| 31 | 1+(−0.809−0.587i)T2 |
| 37 | 1+(0.690−0.951i)T+(−0.309−0.951i)T2 |
| 41 | 1+(0.309−0.951i)T2 |
| 43 | 1−1.90iT−T2 |
| 47 | 1+(0.309−0.951i)T2 |
| 53 | 1+(−1.80−0.587i)T+(0.809+0.587i)T2 |
| 59 | 1+(−0.309−0.951i)T2 |
| 61 | 1+(0.809−0.587i)T2 |
| 67 | 1+0.618T+T2 |
| 71 | 1+(−1.80+0.587i)T+(0.809−0.587i)T2 |
| 73 | 1+(0.309+0.951i)T2 |
| 79 | 1+(0.190−0.587i)T+(−0.809−0.587i)T2 |
| 83 | 1+(−0.809+0.587i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.809+0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46990422625143956994409073863, −9.831649941991043834523976619938, −8.963067586437444394392553396201, −8.190065140699291241794142552370, −6.99722605450992703747572544144, −6.08174767177205357595525021400, −4.60020953849924232237224761952, −3.61862836859801948442511684336, −2.77376311671252114002137359776, −0.849792243372756484325123285709,
2.03572329521647200927007248431, 3.75287951276150827112869079563, 5.08791934335654805435240970050, 5.62111622194256287673052976618, 6.99753379381835989336756536764, 7.36194963039937248938043260493, 8.531351090365129666374990789024, 9.311173752890011606928179974763, 10.07435153527039906797812953343, 10.80828203363443239986681050097