L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + (−0.809 − 0.587i)7-s + (0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + (−0.309 − 0.951i)11-s + (−0.309 + 0.951i)14-s + (0.309 − 0.951i)16-s − 0.999·18-s + (−0.809 + 0.587i)22-s − 1.17i·23-s + (0.809 − 0.587i)25-s + 0.999·28-s + (−0.5 − 0.363i)29-s − 32-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + (−0.809 − 0.587i)7-s + (0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + (−0.309 − 0.951i)11-s + (−0.309 + 0.951i)14-s + (0.309 − 0.951i)16-s − 0.999·18-s + (−0.809 + 0.587i)22-s − 1.17i·23-s + (0.809 − 0.587i)25-s + 0.999·28-s + (−0.5 − 0.363i)29-s − 32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6336524757\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6336524757\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 + 0.951i)T \) |
| 7 | \( 1 + (0.809 + 0.587i)T \) |
| 11 | \( 1 + (0.309 + 0.951i)T \) |
good | 3 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 5 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + 1.17iT - T^{2} \) |
| 29 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (0.690 - 0.951i)T + (-0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 - 1.90iT - T^{2} \) |
| 47 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-1.80 - 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + 0.618T + T^{2} \) |
| 71 | \( 1 + (-1.80 + 0.587i)T + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46990422625143956994409073863, −9.831649941991043834523976619938, −8.963067586437444394392553396201, −8.190065140699291241794142552370, −6.99722605450992703747572544144, −6.08174767177205357595525021400, −4.60020953849924232237224761952, −3.61862836859801948442511684336, −2.77376311671252114002137359776, −0.849792243372756484325123285709,
2.03572329521647200927007248431, 3.75287951276150827112869079563, 5.08791934335654805435240970050, 5.62111622194256287673052976618, 6.99753379381835989336756536764, 7.36194963039937248938043260493, 8.531351090365129666374990789024, 9.311173752890011606928179974763, 10.07435153527039906797812953343, 10.80828203363443239986681050097