Properties

Label 2-624-1.1-c5-0-1
Degree $2$
Conductor $624$
Sign $1$
Analytic cond. $100.079$
Root an. cond. $10.0039$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s − 62.9·5-s − 85.2·7-s + 81·9-s + 69.5·11-s + 169·13-s + 566.·15-s − 1.37e3·17-s − 1.24e3·19-s + 767.·21-s − 749.·23-s + 843.·25-s − 729·27-s − 2.08e3·29-s − 3.86e3·31-s − 626.·33-s + 5.36e3·35-s − 1.47e4·37-s − 1.52e3·39-s − 1.03e4·41-s − 6.75e3·43-s − 5.10e3·45-s + 6.80e3·47-s − 9.54e3·49-s + 1.23e4·51-s − 2.99e4·53-s − 4.38e3·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.12·5-s − 0.657·7-s + 0.333·9-s + 0.173·11-s + 0.277·13-s + 0.650·15-s − 1.15·17-s − 0.788·19-s + 0.379·21-s − 0.295·23-s + 0.269·25-s − 0.192·27-s − 0.459·29-s − 0.722·31-s − 0.100·33-s + 0.740·35-s − 1.76·37-s − 0.160·39-s − 0.965·41-s − 0.557·43-s − 0.375·45-s + 0.449·47-s − 0.567·49-s + 0.665·51-s − 1.46·53-s − 0.195·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(100.079\)
Root analytic conductor: \(10.0039\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 624,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.2829873667\)
\(L(\frac12)\) \(\approx\) \(0.2829873667\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 9T \)
13 \( 1 - 169T \)
good5 \( 1 + 62.9T + 3.12e3T^{2} \)
7 \( 1 + 85.2T + 1.68e4T^{2} \)
11 \( 1 - 69.5T + 1.61e5T^{2} \)
17 \( 1 + 1.37e3T + 1.41e6T^{2} \)
19 \( 1 + 1.24e3T + 2.47e6T^{2} \)
23 \( 1 + 749.T + 6.43e6T^{2} \)
29 \( 1 + 2.08e3T + 2.05e7T^{2} \)
31 \( 1 + 3.86e3T + 2.86e7T^{2} \)
37 \( 1 + 1.47e4T + 6.93e7T^{2} \)
41 \( 1 + 1.03e4T + 1.15e8T^{2} \)
43 \( 1 + 6.75e3T + 1.47e8T^{2} \)
47 \( 1 - 6.80e3T + 2.29e8T^{2} \)
53 \( 1 + 2.99e4T + 4.18e8T^{2} \)
59 \( 1 - 2.03e3T + 7.14e8T^{2} \)
61 \( 1 - 2.10e4T + 8.44e8T^{2} \)
67 \( 1 - 4.52e4T + 1.35e9T^{2} \)
71 \( 1 - 6.02e4T + 1.80e9T^{2} \)
73 \( 1 + 1.53e3T + 2.07e9T^{2} \)
79 \( 1 + 3.03e4T + 3.07e9T^{2} \)
83 \( 1 + 1.86e4T + 3.93e9T^{2} \)
89 \( 1 - 1.99e4T + 5.58e9T^{2} \)
97 \( 1 + 1.40e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.924766961703708938216275619687, −8.890086742764119255999903227311, −8.099336690945009019867822512530, −6.98300354882576335442442866286, −6.44661797476780665264183582937, −5.21910054009892824908019614861, −4.14721621070103243218666131538, −3.43923980181687375625367081222, −1.87505753365457115495476573848, −0.25353645454652869299121311809, 0.25353645454652869299121311809, 1.87505753365457115495476573848, 3.43923980181687375625367081222, 4.14721621070103243218666131538, 5.21910054009892824908019614861, 6.44661797476780665264183582937, 6.98300354882576335442442866286, 8.099336690945009019867822512530, 8.890086742764119255999903227311, 9.924766961703708938216275619687

Graph of the $Z$-function along the critical line