Properties

Label 2-624-1.1-c5-0-18
Degree $2$
Conductor $624$
Sign $1$
Analytic cond. $100.079$
Root an. cond. $10.0039$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s − 11.6·5-s − 90.1·7-s + 81·9-s + 466.·11-s + 169·13-s − 104.·15-s + 1.39e3·17-s − 1.86e3·19-s − 811.·21-s + 4.16e3·23-s − 2.98e3·25-s + 729·27-s − 3.55e3·29-s + 1.95e3·31-s + 4.19e3·33-s + 1.04e3·35-s − 1.42e4·37-s + 1.52e3·39-s − 3.60e3·41-s − 1.70e3·43-s − 941.·45-s + 1.24e4·47-s − 8.67e3·49-s + 1.25e4·51-s + 2.41e3·53-s − 5.41e3·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.207·5-s − 0.695·7-s + 0.333·9-s + 1.16·11-s + 0.277·13-s − 0.120·15-s + 1.16·17-s − 1.18·19-s − 0.401·21-s + 1.64·23-s − 0.956·25-s + 0.192·27-s − 0.785·29-s + 0.364·31-s + 0.670·33-s + 0.144·35-s − 1.71·37-s + 0.160·39-s − 0.334·41-s − 0.140·43-s − 0.0693·45-s + 0.821·47-s − 0.516·49-s + 0.673·51-s + 0.117·53-s − 0.241·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(100.079\)
Root analytic conductor: \(10.0039\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 624,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.637279732\)
\(L(\frac12)\) \(\approx\) \(2.637279732\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
13 \( 1 - 169T \)
good5 \( 1 + 11.6T + 3.12e3T^{2} \)
7 \( 1 + 90.1T + 1.68e4T^{2} \)
11 \( 1 - 466.T + 1.61e5T^{2} \)
17 \( 1 - 1.39e3T + 1.41e6T^{2} \)
19 \( 1 + 1.86e3T + 2.47e6T^{2} \)
23 \( 1 - 4.16e3T + 6.43e6T^{2} \)
29 \( 1 + 3.55e3T + 2.05e7T^{2} \)
31 \( 1 - 1.95e3T + 2.86e7T^{2} \)
37 \( 1 + 1.42e4T + 6.93e7T^{2} \)
41 \( 1 + 3.60e3T + 1.15e8T^{2} \)
43 \( 1 + 1.70e3T + 1.47e8T^{2} \)
47 \( 1 - 1.24e4T + 2.29e8T^{2} \)
53 \( 1 - 2.41e3T + 4.18e8T^{2} \)
59 \( 1 - 4.90e4T + 7.14e8T^{2} \)
61 \( 1 - 1.73e4T + 8.44e8T^{2} \)
67 \( 1 - 5.30e4T + 1.35e9T^{2} \)
71 \( 1 + 3.24e4T + 1.80e9T^{2} \)
73 \( 1 - 7.20e4T + 2.07e9T^{2} \)
79 \( 1 - 4.72e4T + 3.07e9T^{2} \)
83 \( 1 - 6.48e4T + 3.93e9T^{2} \)
89 \( 1 - 8.85e4T + 5.58e9T^{2} \)
97 \( 1 - 4.66e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.689488232120836115931287947870, −8.992114994323481478423055003128, −8.212887225612001405273547203524, −7.10187771550064738202608344930, −6.44625700501869016340572445823, −5.26248305000633231775992636285, −3.89059007764416014080916947519, −3.37449818381322339712164425738, −1.99537174289807526117313582245, −0.77136800194101176246172206176, 0.77136800194101176246172206176, 1.99537174289807526117313582245, 3.37449818381322339712164425738, 3.89059007764416014080916947519, 5.26248305000633231775992636285, 6.44625700501869016340572445823, 7.10187771550064738202608344930, 8.212887225612001405273547203524, 8.992114994323481478423055003128, 9.689488232120836115931287947870

Graph of the $Z$-function along the critical line