Properties

Label 2-624-1.1-c5-0-23
Degree $2$
Conductor $624$
Sign $1$
Analytic cond. $100.079$
Root an. cond. $10.0039$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 82.3·5-s − 101.·7-s + 81·9-s − 154.·11-s + 169·13-s + 741.·15-s − 2.21e3·17-s − 171.·19-s − 910.·21-s + 2.49e3·23-s + 3.65e3·25-s + 729·27-s + 5.53e3·29-s + 7.17e3·31-s − 1.39e3·33-s − 8.32e3·35-s − 580.·37-s + 1.52e3·39-s + 1.18e4·41-s + 6.59e3·43-s + 6.67e3·45-s − 6.91e3·47-s − 6.58e3·49-s − 1.99e4·51-s + 3.51e4·53-s − 1.27e4·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.47·5-s − 0.779·7-s + 0.333·9-s − 0.385·11-s + 0.277·13-s + 0.850·15-s − 1.85·17-s − 0.108·19-s − 0.450·21-s + 0.982·23-s + 1.16·25-s + 0.192·27-s + 1.22·29-s + 1.34·31-s − 0.222·33-s − 1.14·35-s − 0.0697·37-s + 0.160·39-s + 1.10·41-s + 0.544·43-s + 0.491·45-s − 0.456·47-s − 0.391·49-s − 1.07·51-s + 1.72·53-s − 0.567·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(100.079\)
Root analytic conductor: \(10.0039\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 624,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.403576544\)
\(L(\frac12)\) \(\approx\) \(3.403576544\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
13 \( 1 - 169T \)
good5 \( 1 - 82.3T + 3.12e3T^{2} \)
7 \( 1 + 101.T + 1.68e4T^{2} \)
11 \( 1 + 154.T + 1.61e5T^{2} \)
17 \( 1 + 2.21e3T + 1.41e6T^{2} \)
19 \( 1 + 171.T + 2.47e6T^{2} \)
23 \( 1 - 2.49e3T + 6.43e6T^{2} \)
29 \( 1 - 5.53e3T + 2.05e7T^{2} \)
31 \( 1 - 7.17e3T + 2.86e7T^{2} \)
37 \( 1 + 580.T + 6.93e7T^{2} \)
41 \( 1 - 1.18e4T + 1.15e8T^{2} \)
43 \( 1 - 6.59e3T + 1.47e8T^{2} \)
47 \( 1 + 6.91e3T + 2.29e8T^{2} \)
53 \( 1 - 3.51e4T + 4.18e8T^{2} \)
59 \( 1 - 2.61e4T + 7.14e8T^{2} \)
61 \( 1 - 4.28e4T + 8.44e8T^{2} \)
67 \( 1 - 5.14e4T + 1.35e9T^{2} \)
71 \( 1 - 4.66e4T + 1.80e9T^{2} \)
73 \( 1 + 1.90e4T + 2.07e9T^{2} \)
79 \( 1 + 3.74e4T + 3.07e9T^{2} \)
83 \( 1 + 1.01e5T + 3.93e9T^{2} \)
89 \( 1 - 5.95e4T + 5.58e9T^{2} \)
97 \( 1 + 8.66e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.805353329081282244670300954756, −9.021408372978754718610141754146, −8.378764887855950169310935047772, −6.86128270965077973696608550181, −6.43369494193725334487730861939, −5.33578369533347663109905291754, −4.23681725318260795718280439817, −2.79082975054415023070699072984, −2.25417232854210174975124078679, −0.864611366487280071582463196077, 0.864611366487280071582463196077, 2.25417232854210174975124078679, 2.79082975054415023070699072984, 4.23681725318260795718280439817, 5.33578369533347663109905291754, 6.43369494193725334487730861939, 6.86128270965077973696608550181, 8.378764887855950169310935047772, 9.021408372978754718610141754146, 9.805353329081282244670300954756

Graph of the $Z$-function along the critical line