L(s) = 1 | + 9·3-s + 82.3·5-s − 101.·7-s + 81·9-s − 154.·11-s + 169·13-s + 741.·15-s − 2.21e3·17-s − 171.·19-s − 910.·21-s + 2.49e3·23-s + 3.65e3·25-s + 729·27-s + 5.53e3·29-s + 7.17e3·31-s − 1.39e3·33-s − 8.32e3·35-s − 580.·37-s + 1.52e3·39-s + 1.18e4·41-s + 6.59e3·43-s + 6.67e3·45-s − 6.91e3·47-s − 6.58e3·49-s − 1.99e4·51-s + 3.51e4·53-s − 1.27e4·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.47·5-s − 0.779·7-s + 0.333·9-s − 0.385·11-s + 0.277·13-s + 0.850·15-s − 1.85·17-s − 0.108·19-s − 0.450·21-s + 0.982·23-s + 1.16·25-s + 0.192·27-s + 1.22·29-s + 1.34·31-s − 0.222·33-s − 1.14·35-s − 0.0697·37-s + 0.160·39-s + 1.10·41-s + 0.544·43-s + 0.491·45-s − 0.456·47-s − 0.391·49-s − 1.07·51-s + 1.72·53-s − 0.567·55-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(624s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
3.403576544 |
L(21) |
≈ |
3.403576544 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−9T |
| 13 | 1−169T |
good | 5 | 1−82.3T+3.12e3T2 |
| 7 | 1+101.T+1.68e4T2 |
| 11 | 1+154.T+1.61e5T2 |
| 17 | 1+2.21e3T+1.41e6T2 |
| 19 | 1+171.T+2.47e6T2 |
| 23 | 1−2.49e3T+6.43e6T2 |
| 29 | 1−5.53e3T+2.05e7T2 |
| 31 | 1−7.17e3T+2.86e7T2 |
| 37 | 1+580.T+6.93e7T2 |
| 41 | 1−1.18e4T+1.15e8T2 |
| 43 | 1−6.59e3T+1.47e8T2 |
| 47 | 1+6.91e3T+2.29e8T2 |
| 53 | 1−3.51e4T+4.18e8T2 |
| 59 | 1−2.61e4T+7.14e8T2 |
| 61 | 1−4.28e4T+8.44e8T2 |
| 67 | 1−5.14e4T+1.35e9T2 |
| 71 | 1−4.66e4T+1.80e9T2 |
| 73 | 1+1.90e4T+2.07e9T2 |
| 79 | 1+3.74e4T+3.07e9T2 |
| 83 | 1+1.01e5T+3.93e9T2 |
| 89 | 1−5.95e4T+5.58e9T2 |
| 97 | 1+8.66e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.805353329081282244670300954756, −9.021408372978754718610141754146, −8.378764887855950169310935047772, −6.86128270965077973696608550181, −6.43369494193725334487730861939, −5.33578369533347663109905291754, −4.23681725318260795718280439817, −2.79082975054415023070699072984, −2.25417232854210174975124078679, −0.864611366487280071582463196077,
0.864611366487280071582463196077, 2.25417232854210174975124078679, 2.79082975054415023070699072984, 4.23681725318260795718280439817, 5.33578369533347663109905291754, 6.43369494193725334487730861939, 6.86128270965077973696608550181, 8.378764887855950169310935047772, 9.021408372978754718610141754146, 9.805353329081282244670300954756