L(s) = 1 | + 9·3-s + 108.·5-s + 213.·7-s + 81·9-s − 401.·11-s − 169·13-s + 973.·15-s − 1.70e3·17-s + 373.·19-s + 1.92e3·21-s + 2.35e3·23-s + 8.56e3·25-s + 729·27-s − 2.93e3·29-s + 2.06e3·31-s − 3.60e3·33-s + 2.30e4·35-s + 1.39e4·37-s − 1.52e3·39-s + 3.62e3·41-s + 1.81e4·43-s + 8.75e3·45-s − 1.18e4·47-s + 2.87e4·49-s − 1.53e4·51-s − 1.34e4·53-s − 4.33e4·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.93·5-s + 1.64·7-s + 0.333·9-s − 0.999·11-s − 0.277·13-s + 1.11·15-s − 1.43·17-s + 0.237·19-s + 0.950·21-s + 0.926·23-s + 2.74·25-s + 0.192·27-s − 0.647·29-s + 0.385·31-s − 0.576·33-s + 3.18·35-s + 1.67·37-s − 0.160·39-s + 0.337·41-s + 1.49·43-s + 0.644·45-s − 0.780·47-s + 1.71·49-s − 0.827·51-s − 0.656·53-s − 1.93·55-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(624s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
5.015835463 |
L(21) |
≈ |
5.015835463 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−9T |
| 13 | 1+169T |
good | 5 | 1−108.T+3.12e3T2 |
| 7 | 1−213.T+1.68e4T2 |
| 11 | 1+401.T+1.61e5T2 |
| 17 | 1+1.70e3T+1.41e6T2 |
| 19 | 1−373.T+2.47e6T2 |
| 23 | 1−2.35e3T+6.43e6T2 |
| 29 | 1+2.93e3T+2.05e7T2 |
| 31 | 1−2.06e3T+2.86e7T2 |
| 37 | 1−1.39e4T+6.93e7T2 |
| 41 | 1−3.62e3T+1.15e8T2 |
| 43 | 1−1.81e4T+1.47e8T2 |
| 47 | 1+1.18e4T+2.29e8T2 |
| 53 | 1+1.34e4T+4.18e8T2 |
| 59 | 1−2.98e4T+7.14e8T2 |
| 61 | 1+2.62e4T+8.44e8T2 |
| 67 | 1−5.03e3T+1.35e9T2 |
| 71 | 1+1.49e4T+1.80e9T2 |
| 73 | 1+3.41e4T+2.07e9T2 |
| 79 | 1−1.06e5T+3.07e9T2 |
| 83 | 1−9.81e4T+3.93e9T2 |
| 89 | 1+3.22e4T+5.58e9T2 |
| 97 | 1+1.24e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.678898849685064217966673390695, −9.061704465305056461415882129486, −8.189248379587232770798656981448, −7.27456146439643197788361532711, −6.12491152672947748266161869564, −5.16606387490170922762089770562, −4.57653853870386938243487044266, −2.61482769082547122413051815636, −2.14040649820841515340816500108, −1.13800346869777333813957498659,
1.13800346869777333813957498659, 2.14040649820841515340816500108, 2.61482769082547122413051815636, 4.57653853870386938243487044266, 5.16606387490170922762089770562, 6.12491152672947748266161869564, 7.27456146439643197788361532711, 8.189248379587232770798656981448, 9.061704465305056461415882129486, 9.678898849685064217966673390695