Properties

Label 2-624-1.1-c5-0-35
Degree $2$
Conductor $624$
Sign $1$
Analytic cond. $100.079$
Root an. cond. $10.0039$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 108.·5-s + 213.·7-s + 81·9-s − 401.·11-s − 169·13-s + 973.·15-s − 1.70e3·17-s + 373.·19-s + 1.92e3·21-s + 2.35e3·23-s + 8.56e3·25-s + 729·27-s − 2.93e3·29-s + 2.06e3·31-s − 3.60e3·33-s + 2.30e4·35-s + 1.39e4·37-s − 1.52e3·39-s + 3.62e3·41-s + 1.81e4·43-s + 8.75e3·45-s − 1.18e4·47-s + 2.87e4·49-s − 1.53e4·51-s − 1.34e4·53-s − 4.33e4·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.93·5-s + 1.64·7-s + 0.333·9-s − 0.999·11-s − 0.277·13-s + 1.11·15-s − 1.43·17-s + 0.237·19-s + 0.950·21-s + 0.926·23-s + 2.74·25-s + 0.192·27-s − 0.647·29-s + 0.385·31-s − 0.576·33-s + 3.18·35-s + 1.67·37-s − 0.160·39-s + 0.337·41-s + 1.49·43-s + 0.644·45-s − 0.780·47-s + 1.71·49-s − 0.827·51-s − 0.656·53-s − 1.93·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(100.079\)
Root analytic conductor: \(10.0039\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 624,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(5.015835463\)
\(L(\frac12)\) \(\approx\) \(5.015835463\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
13 \( 1 + 169T \)
good5 \( 1 - 108.T + 3.12e3T^{2} \)
7 \( 1 - 213.T + 1.68e4T^{2} \)
11 \( 1 + 401.T + 1.61e5T^{2} \)
17 \( 1 + 1.70e3T + 1.41e6T^{2} \)
19 \( 1 - 373.T + 2.47e6T^{2} \)
23 \( 1 - 2.35e3T + 6.43e6T^{2} \)
29 \( 1 + 2.93e3T + 2.05e7T^{2} \)
31 \( 1 - 2.06e3T + 2.86e7T^{2} \)
37 \( 1 - 1.39e4T + 6.93e7T^{2} \)
41 \( 1 - 3.62e3T + 1.15e8T^{2} \)
43 \( 1 - 1.81e4T + 1.47e8T^{2} \)
47 \( 1 + 1.18e4T + 2.29e8T^{2} \)
53 \( 1 + 1.34e4T + 4.18e8T^{2} \)
59 \( 1 - 2.98e4T + 7.14e8T^{2} \)
61 \( 1 + 2.62e4T + 8.44e8T^{2} \)
67 \( 1 - 5.03e3T + 1.35e9T^{2} \)
71 \( 1 + 1.49e4T + 1.80e9T^{2} \)
73 \( 1 + 3.41e4T + 2.07e9T^{2} \)
79 \( 1 - 1.06e5T + 3.07e9T^{2} \)
83 \( 1 - 9.81e4T + 3.93e9T^{2} \)
89 \( 1 + 3.22e4T + 5.58e9T^{2} \)
97 \( 1 + 1.24e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.678898849685064217966673390695, −9.061704465305056461415882129486, −8.189248379587232770798656981448, −7.27456146439643197788361532711, −6.12491152672947748266161869564, −5.16606387490170922762089770562, −4.57653853870386938243487044266, −2.61482769082547122413051815636, −2.14040649820841515340816500108, −1.13800346869777333813957498659, 1.13800346869777333813957498659, 2.14040649820841515340816500108, 2.61482769082547122413051815636, 4.57653853870386938243487044266, 5.16606387490170922762089770562, 6.12491152672947748266161869564, 7.27456146439643197788361532711, 8.189248379587232770798656981448, 9.061704465305056461415882129486, 9.678898849685064217966673390695

Graph of the $Z$-function along the critical line