Properties

Label 2-624-1.1-c5-0-44
Degree $2$
Conductor $624$
Sign $-1$
Analytic cond. $100.079$
Root an. cond. $10.0039$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 26.3·5-s + 108.·7-s + 81·9-s − 285.·11-s + 169·13-s − 237.·15-s + 964.·17-s − 1.12e3·19-s − 977.·21-s − 3.19e3·23-s − 2.43e3·25-s − 729·27-s − 150.·29-s + 1.01e3·31-s + 2.57e3·33-s + 2.86e3·35-s + 1.13e4·37-s − 1.52e3·39-s + 3.40e3·41-s − 1.28e4·43-s + 2.13e3·45-s − 1.95e4·47-s − 5.01e3·49-s − 8.67e3·51-s − 9.70e3·53-s − 7.52e3·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.471·5-s + 0.837·7-s + 0.333·9-s − 0.711·11-s + 0.277·13-s − 0.272·15-s + 0.809·17-s − 0.713·19-s − 0.483·21-s − 1.26·23-s − 0.777·25-s − 0.192·27-s − 0.0332·29-s + 0.190·31-s + 0.410·33-s + 0.394·35-s + 1.35·37-s − 0.160·39-s + 0.315·41-s − 1.05·43-s + 0.157·45-s − 1.29·47-s − 0.298·49-s − 0.467·51-s − 0.474·53-s − 0.335·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(100.079\)
Root analytic conductor: \(10.0039\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 624,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 9T \)
13 \( 1 - 169T \)
good5 \( 1 - 26.3T + 3.12e3T^{2} \)
7 \( 1 - 108.T + 1.68e4T^{2} \)
11 \( 1 + 285.T + 1.61e5T^{2} \)
17 \( 1 - 964.T + 1.41e6T^{2} \)
19 \( 1 + 1.12e3T + 2.47e6T^{2} \)
23 \( 1 + 3.19e3T + 6.43e6T^{2} \)
29 \( 1 + 150.T + 2.05e7T^{2} \)
31 \( 1 - 1.01e3T + 2.86e7T^{2} \)
37 \( 1 - 1.13e4T + 6.93e7T^{2} \)
41 \( 1 - 3.40e3T + 1.15e8T^{2} \)
43 \( 1 + 1.28e4T + 1.47e8T^{2} \)
47 \( 1 + 1.95e4T + 2.29e8T^{2} \)
53 \( 1 + 9.70e3T + 4.18e8T^{2} \)
59 \( 1 - 2.27e4T + 7.14e8T^{2} \)
61 \( 1 - 4.14e4T + 8.44e8T^{2} \)
67 \( 1 - 1.53e4T + 1.35e9T^{2} \)
71 \( 1 + 2.98e4T + 1.80e9T^{2} \)
73 \( 1 - 3.76e4T + 2.07e9T^{2} \)
79 \( 1 + 2.80e4T + 3.07e9T^{2} \)
83 \( 1 - 3.05e4T + 3.93e9T^{2} \)
89 \( 1 - 6.65e3T + 5.58e9T^{2} \)
97 \( 1 + 6.86e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.685526584328089355798468456868, −8.274042276430446052894306978062, −7.82514455563205165341099015109, −6.52170284928462768188382014341, −5.71776360084898646915058369712, −4.93233942190561517574760165646, −3.87039399529978680144477919958, −2.35252437946620142354283522279, −1.36593773920144369393149596911, 0, 1.36593773920144369393149596911, 2.35252437946620142354283522279, 3.87039399529978680144477919958, 4.93233942190561517574760165646, 5.71776360084898646915058369712, 6.52170284928462768188382014341, 7.82514455563205165341099015109, 8.274042276430446052894306978062, 9.685526584328089355798468456868

Graph of the $Z$-function along the critical line