L(s) = 1 | + (1.92 + 4.82i)3-s + 18.6i·5-s − 4.79i·7-s + (−19.5 + 18.5i)9-s − 18.4·11-s − 13·13-s + (−89.9 + 35.9i)15-s + 42.4i·17-s − 58.4i·19-s + (23.1 − 9.23i)21-s − 20.6·23-s − 222.·25-s + (−127. − 58.6i)27-s − 65.8i·29-s + 129. i·31-s + ⋯ |
L(s) = 1 | + (0.370 + 0.928i)3-s + 1.66i·5-s − 0.258i·7-s + (−0.725 + 0.688i)9-s − 0.505·11-s − 0.277·13-s + (−1.54 + 0.618i)15-s + 0.605i·17-s − 0.705i·19-s + (0.240 − 0.0959i)21-s − 0.186·23-s − 1.78·25-s + (−0.908 − 0.417i)27-s − 0.421i·29-s + 0.748i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.618 + 0.785i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.618 + 0.785i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.9016305200\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9016305200\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.92 - 4.82i)T \) |
| 13 | \( 1 + 13T \) |
good | 5 | \( 1 - 18.6iT - 125T^{2} \) |
| 7 | \( 1 + 4.79iT - 343T^{2} \) |
| 11 | \( 1 + 18.4T + 1.33e3T^{2} \) |
| 17 | \( 1 - 42.4iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 58.4iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 20.6T + 1.21e4T^{2} \) |
| 29 | \( 1 + 65.8iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 129. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 280.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 49.8iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 336. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 482.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 256. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 96.1T + 2.05e5T^{2} \) |
| 61 | \( 1 + 275.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 912. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 842.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 851.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 305. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 394.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.35e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 261.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65399811953720297990789748261, −10.13684724437901491152706601960, −9.200695877800232147522541947602, −8.096879101250444998255460588080, −7.26613625094839999110783026361, −6.34293507908729015909822428809, −5.22733193060623562613784522440, −4.02340282563261573850654717209, −3.12892802222378269550616620052, −2.29725216455347700948704489997,
0.24119068026179436863371928621, 1.36002558899392762670704675039, 2.47264953233651532728917553068, 3.95972915843902528067601770078, 5.19756922026556717137233442521, 5.83099754869477433387687138390, 7.19590319017204658363999993188, 7.960831720387774169335902692398, 8.771053876962845925658829989565, 9.264373332141908730667928948275